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1 Introduction

In [31] a theory of human computation, analogous to Turing’s theory of ma-
chine computation is discussed. The issue there is whether there might be
an analogue to Church’s thesis in this human domain. Examples of human
algorithms discussed include the making of scrambled eggs. By comparison,
Lynn Stein in this volume discusses the making of a peanut butter and jelly
sandwich. Neither she nor us in this volume have any concern with Church’s
thesis as such, although that might prove to be a fascinating topic for a fu-
ture paper. Rather the issue here is interaction, which occurs most naturally in
multi-agent algorithms, unlike the making of scrambled eggs or peanut butter
sandwiches where one agent normally suffices.3 Such multi-agent algorithms,
examples of which are building a house, or playing bridge, are examples of
what we shall call Social Software after [32]. In that paper, one of us asked
“Is it possible to create a theory of how social procedures work with a view
to creating better ones and ensuring the correctness of the ones we do have?”
The present paper will survey some of the logical and mathematical tools that
have been developed over the years that may help address this question.

Social procedures occur at two levels. One is the purely personal level
where an individual is able to perform some complex action because social
structures have been set up to enable such an action. Taking a train (which
requires a system) or even a bath (where the city must supply not only the
water but also a system of pipes to carry it) are examples of such situations
where an individual is doing something simple or complex which is enabled by
existing social structures. Procedures which are truly social are those which
require more than one individual even in their execution. A piano duet is a sim-
ple example, but holding an election or passing a bill through the Senate are
more complex ones. Computer programs, whether sequential or distributed,
have logical and algorithmic properties which can be analyzed by means of

3However, as the adage goes, it does take many cooks to spoil the broth!.
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appropriate logics of programs. Similarly, these social procedures also have
logical properties which can be analyzed by means of the appropriate logical
tools, augmented by tools from Game theory, perhaps even from Psychology.

There are several ways to compare social software with distributed com-
puting. In both cases the issue of knowledge arises. When several processes,
whether human or computer, are taking part in a common procedure, then
they need to know enough of what others are doing so as to be able to do their
part when the time comes. Indeed, Halpern and Moses’ fundamental paper
on common knowledge was written in the context of distributed computing,
although other authors like Aumann (Game theory, see [2, 3]) and Lewis (so-
cial agreement, see [17] ) had a different setting. Thus knowledge matters and
we shall give a quick survey of current formal theories of knowledge.

However, unless the agents have the same goal, or at least compatible
goals, there may be some element of strategizing where each agent tries to
maximize its own benefit (sometimes represented as utility ) while keeping in
mind what other agents are apt to do. This makes game theory relevant.

In the context of social programming where an overarching social agent
(say, a government) is trying to make agents act in a socially beneficial way,
the social agent will still need to take into account the fact that while its
own goal is social welfare, the goal of the individual agent is his own personal
welfare. Thus agents have to be guided to act in beneficial ways. A simple
example of this is the system of library fines to ensure that borrowers do not
keep books too long and prevent other borrowers from having access to them.

Finally, agents may sometimes act in concert with other agents, i.e., form
coalitions. There is an extensive theory of co-operative games but our primary
purpose here will be to give a brief account of the logical theory of coalitions
due to Marc Pauly.

Thus what we hope to do in this paper is to survey some of these logical
and analytical tools and indicate a few applications.
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These tools are:

1. Logic of Knowledge
2. Logic of Games
3. Game Theory and Economic Design

In the following sections we shall give brief descriptions of these three
tools and then indicate some applications. We assume that the reader has
some mild acquaintance with Game theory (although we shall not actually
use very much), and [16] is a good reference for that field. Moore [18] gives a
survey of Economic design. The sections are reasonably independent and the
applications depend mainly on Reasoning about Knowledge.

2 Models of Knowledge and Belief

Formal models of knowledge and beliefs have been discussed by a diverse list of
communities, including computer scientists ([7, 42, 27]), economists ([5, 2, 4])
and philosophers ([21, 11]). In this section we provide a brief overview of some
of the models found in the computer science and game theory literature.

2.1 Epistemic Logic

Starting with Hintikka’s Knowledge and Belief [21] there has been a lot of
research on the use of logic to formalize the uncertainty faced by a group of
agents. A detailed discussion of epistemic and modal logic and its applications
in computer science can be found in the textbooks [7, 27].

The main idea of epistemic logic is to extend the language of propositional
logic with symbols (Ki) that are used to formalize the statement “agent i
knows φ” where φ is any formula. For example, the formula Kiφ → φ repre-
sents the widely accepted principle that agents can only know true proposi-
tions, i.e., if i knows φ, then φ must be true.

Formally, if At is a set of atomic propositions, then the language of multi-
agent epistemic logic LK

n (At) (or LK if At, n are understood from the context)
has the following syntactic form:

φ := A | ¬φ | φ ∧ ψ | Kiφ

where A ∈ At. We assume that the boolean connectives ∨,→,↔ are defined as
usual. The formula Liφ, defined as ¬Ki¬φ, is the dual of Kiφ. Given that the
intended meaning of the formula Kiφ is “agent i knows φ”, Liφ can be read
as “φ is epistemically possible for agent i”. There are a number of principles
about knowledge – listed below – expressible in the language of epistemic
logic that have been widely discussed by many different communities. Since
our focus is on social software and not on epistemic or modal logic, we shall
simply assume those schemes which correspond to the most widely prevalent
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understanding of the formal properties of knowledge. When more restricted
properties of knowledge are entertained, negative introspection is the first
axiom to be dropped. Let φ, ψ ∈ LK be arbitrary formulas.

K Ki(φ→ ψ) → (Kiφ→ Kiψ) Kripke’s axiom
T Kiφ→ φ Truth
4 Kiφ→ KiKiφ Positive introspection
5 ¬Kiφ→ Ki¬Kiφ Negative introspection
D ¬Ki⊥ Consistency

Note that D is a consequence of T .
We now turn to the semantics of epistemic logic. The main idea is that a

formula Kiφ is true provided that φ is true in all situations that i considers
possible. This definition was first put forward by Leibniz and is discussed
in detail by Hintikka [21]. This intuition can be formalized using a Kripke
structure.

Definition 1. A Kripke model is a triple 〈W, {Ri}i∈A, V 〉 where W is a
non-empty set, for each i ∈ A, Ri ⊆W ×W , and V : At → 2W is a valuation
function.

In order to make sure that the axiom schemes K,T, 4, 5, D hold, the rela-
tions Ri must all be equivalence relations. Elements w ∈W are called states,
or worlds. We write wRiv if (w, v) ∈ Ri. The relation Ri represents the uncer-
tainty that agent i has about the “actual situation”. In other words, if wRiv
and the actual situation is w, then for all agent i knows, the situation may be
v. Notice that Ri represents the uncertainty each agent has about the actual
situation and the agents’ uncertainty about how the other agents view the
situation, but it does not settle which basic facts are true at which states. For
this, we need the valuation function V , where w ∈ V (A) is interpreted as A is
true at state w. We write M, w |= φ to mean that φ is true at state w in M.
Truth is defined recursively as follows. Let M = 〈W, {Ri}i∈A, V 〉 be a model
and w ∈W any state.

1. M, w |= A if A ∈ V (s)
2. M, w |= φ ∨ ψ if M, w |= φ or M, w |= ψ
3. M, w |= ¬φ if M, w 6|= φ
4. M, w |= Kiφ if for each v ∈W , if wRiv, then M, w |= φ

If the model M is understood we may write w |= φ. If M, w |= φ for all
states w ∈ W , then we say that φ is valid in M and write M |= φ. Note
that principle 4 is justified by the fact that i can only know φ if φ is true in
every state where, for all i knows, he might be.

Common knowledge can be defined via the “everyone knows” operator.
Let Eφ = K1φ ∧ K2φ... ∧ Knφ, where A = {1, ..., n} is the set of agents.
Thus Eφ says that all n agents know φ. Then φ is “common knowledge” is
expressed by the infinite conjunction φ ∧ Eφ ∧ E2φ ∧ .... For a more detailed
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discussion about reasoning about common knowledge see [15, 7]. See [17, 6]
for a philosophical discussion of common knowledge.

2.2 Aumann Structures

One of the first attempts to formalize knowledge in economic situations is by
Aumann [2]. As in the previous section, let W be a set of worlds, or states. In
this section we reason semantically. Let S be the set of all states of nature. A
state of nature is a complete description of the exogenous parameters (i.e. facts
about the physical world) that do not depend on the agents’ uncertainties.

In the previous section we defined an object language that could express
statements of the form “agent i knows φ”, and interpreted these formulas in
a Kripke model. In this section we have no such object language. Reasoning
about agents is done purely semantically. Thus we are making essential use of
the fact that we can identify a proposition with the set of worlds in which it
is true. Intuitively, we say that a set E ⊆W , called an event, is true at state
w if w ∈ E.

In [2], Aumann represents the uncertainty of each agent about the actual
state of affairs by a partition over the set of states. Formally, for each agent
i ∈ A, there is a partition Pi over the set W . (A partition of W is a pairwise
disjoint collection of subsets of W whose union is all of W .). Elements of Pi

are called cells, and for w ∈W , let Pi(w) denote the cell of Pi containing w.
Putting everything together,

Definition 2 (Aumann Model). An Aumann model based on S is a
triple 〈W, {Pi}i∈A, σ〉, where W is a nonempty set, each Pi is a partition over
W and σ : W → S.

So, σ is analogous to a valuation function, it assigns to each world a state
of nature in which every ground fact (any fact not about the uncertainty of the
agents) is either true or false. If σ(w) = σ(w′) then the two worlds w,w′ will
agree on all the facts, but the agents may have different knowledge in them.
Elements of W are richer in information than the elements of S.

The event that agent i knows event E, denoted KiE, is defined to be

KiE = {w | Pi(w) ⊆ E}

In other words, for each agent i ∈ A, we define a set valued function Ki : 2W →
2W using the above definition. It is not hard to show, given this definition and
the fact that the Pi s are patitions, that for each i ∈ A and each E ⊆W ,

E ⊆ F ⇒ Ki(E) ⊆ Ki(F ) Monotonicity
Ki(E ∩ F ) = Ki(E) ∩ Ki(F ) Closure Under Intersection
KiE ⊆ E Truth
Ki(E) ⊆ Ki(Ki(E)) Positive introspection
Ki(E) ⊆ Ki(Ki(E)) Negative introspection
Ki(∅) = ∅ Consistency



6 Eric Pacuit and Rohit Parikh

These are the analogues of the K,T, 4, 5 and D axiom schemes from the
previous section. In fact, there is an obvious translation between Aumann
structures and Kripke structures. In [14], Halpern formally compares the two
frameworks pointing out similarities and important differences.

There is a more fine-grained model of uncertainty discussed in the game
theory literature, usually called a Bayesian model. In a Bayesian model, the
uncertainty of each agent is represented by probability functions over the set
of worlds, and so we can express exactly how uncertain each agent is about the
given situation. A detailed discussion and pointers to the relevant literature
can be found in [5, 3].

Finally, a set E is a common knowledge set if Ki(E) = E for all i.4 Event
F is common knowledge at state w if there is a set E such that E is a
common knowledge set, and w ∈ E ⊆ F . Note that this definition of common
knowledge is very transparent compared to the more syntactic one from the
previous section.

2.3 History-based models

History based structures, also called interpreted systems, have been exten-
sively discussed in the distributed computing literature (see [7] (Chapter 4,
5 and 8 for a thorough discussion). This section will present the framework
of Parikh and Ramanjam found in [35, 36]. In [36], Parikh and Ramanajam
argue that this framework very naturally formalizes many social situations
by providing a semantics of messages in which sophisticated notions such as
Gricean implicature can be represented.

We begin by assuming the existence of a global discrete clock (whether the
agents have access to this clock is another issue that will be discussed shortly).
At each moment, some event takes place. Let E be a fixed set of events. As
discussed in the previous section, it is natural to allow that different agents
are aware of different events. To that end, assume for each agent i ∈ A, a set
Ei ⊆ E of events “seen” by agent i. Before defining a history we need some
notation: Given any set X (of events), X∗ is the set of finite strings over X
and Xω the set of infinite strings over X. A global history is any sequence,
or string, of events, i.e., an element of E∗ ∪ Eω. Let h, h′, . . . range over E∗

and H,H ′, . . . range over E∗∪Eω. A local history for agent i is any element
h ∈ E∗i . Notice that local histories are always assumed to be finite.

Given two histories H and H ′, write H � H ′ to mean H is a finite
prefix of H ′. Let hH denote the concatenation of finite history h with pos-
sibly infinite history H. Let Hk denote the finite prefix of H of length k
(given that H is infinite or of length ≥ k). Given a set H of histories, define
FinPre(H) = {h | h ∈ E∗, h � H, and H ∈ H}. So FinPre(H) is the set of

4Note that this definition makes heavy use of the richer state space W . Within
E, agent i is not only aware of certain objective facts, she is also aware of some of
the knowledge of other agents.
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finite prefixes of elements of H. A set H ⊆ E∗ ∪ Eω is called a protocol.
Intuitively, the protocol is simply the set of possible histories that could arise
in a particular situation. Following [36], little structure is placed on the set
H. I.e., the protocol can be any nonempty set of histories, provided only that
if a history H is in the protocol H, then so is any prefix of H. Notice that this
notion of a protocol differs from standard usage of the term protocol which
is taken to mean a procedure executed by a group of agents. Certainly any
procedure will generate a set of histories, but not every set of histories can be
generated by some procedure. Therefore, this definition of protocol is more
general than the standard definition. It is useful as [36] use it to interpret
even notions like Gricean implicature.

Given a particular finite global history H and an agent i, i will only “see”
the events in H that are from Ei. This leads to a natural definition of agent
uncertainty.

Definition 3. For each i ∈ A define λi : FinPre(Eω) → E∗i to be the local
view function of agent i.

In systems in which agents cannot access a global clock. λi(H) is obtained
by mapping each event in Ei to itself and all other events to the empty string.
Thus if λi(H) = h for some finite history H, and event e ∈ Ei, which is visible
to i, takes place next, then λi(He) = he, otherwise λi(He) = h. Let H and H ′

be two global histories in some protocol H. We write H ∼i,t H
′ if according

to agent i, H is ‘equivalent’ to H ′ at time t, i.e., λi(Ht) = λi(H ′
t). It is easy

to see that for each time t ∈ N, ∼i,t is an equivalence relation.

Definition 4. Given a history based multi-agent frame for a set of agents
A and events E, FH = 〈H, E1, . . . , En〉, a history based model is a tuple
〈H, λ1, . . . , λn, V 〉, where each λi is a local view function and V : FinPre(H) →
2Φ0 is a valuation function.

Finally, a few comments about whether agents have access to the global clock.
We say that a history based frame FH is synchronous if all agents have
access to the global clock. Formally this is achieved by assuming a special
event c ∈ E with c ∈ Ei for each i ∈ A. This event represents a clock tick. In
synchronous history based models, the local view function maps each event
seen by agent i in some finite history H to itself, and all other events to the
clock tick c. Notice that in such a case, for any finite global history H and
local view function λi, the length of λi(H) and the length of H are always
equal.

Given these tree-like structures, it is natural to define a language in which
we can express both knowledge-theoretic and temporal facts. Formally, we add
a unary modal operator © and a binary modal operator U to the language
LK. Denote this language by LKT

n . ©φ is intended to mean that φ is true
after the next event and φUψ is intended to mean that φ is true until ψ
becomes true. Other well known temporal operators can be defined. Details
can be found in [36] and [13, 7].
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Truth is defined at finite histories. Thus, for H ∈ H, H, t |= φ is intended to
mean that in history H at time t, φ is true. Boolean connectives and atomic
propositions are obvious.

1. H, t |= ©φ iff H, t+ 1 |= φ
2. H, t |= φUψ iff there exists m ≥ t such that H,m |= ψ and for all l such

that t < l < m, H, l |= φ
3. H, t |= Kiφ iff for all H ′ ∈ H such that H ∼i,t H

′, H ′, t |= φ.

In the above definition of truth of Ki formulas (item 3 above), it is assumed
that the agents all share a global clock. This assumption is made in order to
simplify the presentation. A sound and complete axiomatization for knowledge
and time under various assumptions can be found in [13], using a slightly
different framework.

3 Logic of Games

The Logic of Games [33] is an offshoot of Propositional Dynamic Logic or
PDL. PDL was invented by Fischer and Ladner [8] following Pratt’s work on
First Order Dynamic Logic.

In Dynamic Logic a program is thought of as running in a state space, and
a program α is thought of as starting in some state s and arriving at some
state t if and when it finishes. The program need not be deterministic so that
starting with the same s it might instead arrive at some t′. This allows us to
see α as a binary relation Rα = {(s, t)|α can go from s to t}. This converts α
into a modality and allows us to define the constructs [α] and 〈α〉, which are
the program theoretic versions of the modal operators box and diamond. The
formula 〈α〉A holds at state s if there is some run of the program α starting at
s which results in a state t which satisfies A. [α]A holds if every terminating
run does so.

However, our interest here is in games which can no longer be represented
as binary relations, instead the semantics is more like the Scott-Montague
semantics for modal logic in which Kripke’s axiom K is no longer valid. The
reason roughly is this. If α is a program and < α > (A ∨ B) holds then
〈α〉A or 〈α〉B must hold. For if there is an α-computation which results in
A ∨ B then there must be one which results in A or one which results in B.
(< α > (A ∨B) →< α > (A)∨ < α > (B) is an axiom equivalent to Kripke’s
K). But this need not hold with a game. It may well be that one player, say
I, has a winning strategy to achieve A ∨ B in the game α without having a
winning strategy to achieve either A reliably or B reliably. For instance a game
of chess may reach a point where Black can ensure a checkmate in 3 moves,
but it is White’s moves which decide whether that checkmate is by queen or
by rook – Black cannot ensure a checkmate by queen nor a checkmate by
rook. Thus Game logic is a non-normal (non-K) logic corresponding to PDL.
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3.1 Syntax and Semantics

We have a finite supply g1, . . . , gn of atomic games and a finite supply
P1, . . . , Pm of atomic formulae. Then we define games α and formulae A by
induction.

1. Each Pi is a formula.
2. If A and B are formulae, then so are A ∨B, ¬A.
3. If A is a formula and α is a game, then (α)A is a formula.
4. Each gi is a game.
5. If α and β are games, then so are α;β ( or simply αβ), α ∨ β, 〈α∗〉, and
αd. Here αd is the dual of α.

6. If A is a formula then 〈A〉 is a game.

We shall write α∧β, [α∗] and [A] respectively for the duals of α∨β, 〈α∗〉 and
〈A〉. If confusion will not result then we shall write αA for (α)A. E.g. 〈g∗i 〉A
instead of (〈g∗i 〉)A.

Intuitively, the games can be explained as follows. α;β is the game: play
α and then β. The game α ∨ β is: player I has the first move, she decides
whether α or β is to be played, and then the chosen game is played. The
game α ∧ β is similar except that player II makes the decision. In 〈α∗〉, the
game α is played repeatedly (perhaps zero times) until player I decides to
stop. She need not declare in advance how many times is α to be played, but
she is required to eventually stop, and player II may use this fact as part of
his strategy. Player I may not stop in the middle of some play of α. Similarly
with [α∗] and player II. In αd, the two players interchange roles. Finally, with
〈A〉, the formula A is evaluated. If A is false, then I loses, otherwise we go on.
(Thus 〈A〉B is equivalent to A ∧ B.) Similarly with [A] and II. The formula
(α)A means that player I has a winning strategy to play game α in such a
way that formula A is true if and when the game ends (or if the game does
not end, the fault for that lies with II).

Formally, a model of game logic consists of a set W of worlds; for each
atomic P a subset π(P ) of W ; and for each primitive game g a subset ρ(g)
of W × P (W ), where P (W ) is the power set of W . ρ(g) must satisfy the
monotonicity condition: if (s,X) ∈ ρ(g) and X ⊆ Y , then (s, Y ) ∈ ρ(g). For
clearly if an agent can play the game so as to be sure to be in X at the
end, then the agent can also ensure Y by simply ensuring X. We shall find it
convenient to think of ρ(g) as an operator from P (W ) to itself, given by the
formula

ρ(g)(X) = {s|(s,X) ∈ ρ(g)}

It is then monotonic inX. We define π(A) and ρ(α) for more complex formulae
and games as follows:

1. π(A ∨B) = π(A) ∪ π(B)
2. π(¬A) = W − π(A)
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3. π((α)A) = {s|(s, π(A)) ∈ ρ(α)} = ρ(α)(π(A))
4. ρ(α;β)(X) = ρ(α)(ρ(β)(X))
5. ρ(α ∨ β)(X) = ρ(α)(X) ∪ ρ(β)(X)
6. ρ(〈α∗〉)(X) = µY (X ⊆ Y ∧ ρ(α)(Y ) ⊆ Y )
7. ρ(αd)(X) = W − ρ(α)(W −X)
8. ρ(〈A〉)(X) = π(A) ∩X

It is easily checked that ρ(α ∧ β)(X) = ρ(α)(X) ∩ ρ(β)(X), ρ([A])(X) =
(W − π(A)) ∪ X, and ρ([α∗])(X) = νY ((Y ⊆ X) ∧ (Y ⊆ ρ(α)(Y )) where
νY means “the largest Y such that”. This is easily seen by noticing that
ρ([α∗])(X) = W − ρ(〈α∗〉)(W − X) = W – the smallest Z such that
(W −X) ⊆ Z and ρ(α)(Z) ⊆ Z.

We shall have occasion to use both ways of thinking of ρ, as a map from P (W )
to itself, also as a subset of W ×P (W ). In particular we shall need the (easily
checked) fact that (s,X) ∈ ρ(β; γ) iff there is a Y such that (s, Y ) ∈ ρ(β) and
for all t ∈ Y , (t,X) ∈ ρ(γ). Similarly, (s,X) ∈ ρ(β ∨ γ) iff (s,X) ∈ ρ(β) or
(s,X) ∈ ρ(γ).

So far we have made no connection with PDL. However, given a language
of PDL we can associate with it a game logic where to each program ai of PDL
we associate two games 〈ai〉 and [ai]. We take ρ(〈a〉)(X) = {s : ∃t(s, t) ∈ Ra

and t ∈ X} and ρ([a])(X) = {s : ∀t(s, t) ∈ Ra implies t ∈ X} and the
formulae of PDL can be translated easily into those of game logic. Note that
if the program a is to be run and player I wants to have A true after, then if
she runs a, only 〈a〉A needs to be true. However, if player II is going to run
the program a then [a]A needs to be true for I to win in any case. Note that if
there are no a-computations beginning at the state s, then player II is unable
to move, [a]A is true and player I wins. In other words, unlike the situation
in chess, a situation where a player is unable to move is regarded as a loss for
that player in both PDL and Game Logic.

However, Game Logic is more expressive than PDL. The formula 〈[b∗]〉false
of game logic says that there is no infinite computation of the program b, a
notion that cannot be expressed in PDL.

Finally, let us show how well-foundedness can be defined in Game Logic.
Given a linear ordering R over a set W , consider the model of Game Logic
where g denotes [a] and Ra is the inverse relation of R. Then R is well-
founded over W iff the formula 〈g∗〉false is true. Player I cannot terminate
the game without losing, but she is required to terminate the game sometime.
The only way she can win is to keep saying to player II, keep playing!, and
hope that player II will sooner or later be deadlocked. (the sub-game [a] of
〈[a]∗〉 is a game where player II moves, and in the main game 〈[a]∗〉, player I
is responsible for deciding how many times is [a] played.) Thus I wins iff there
are no infinite descending sequences of R on W .

However, despite its power, game logic can be translated into µ-calculus
of [19] and by the decision procedure of [20], is decidable. An elementary
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decision procedure for dual-free Game Logic exists as does a completeness
result, whose axiomatization is given below.

3.2 Completeness

The following axioms and rules are complete for the “dual-free” part of game
logic.

The axioms of game logic

1. All tautologies
2. (α;β)A⇔ (α)(β)A
3. (α ∨ β)A⇔ (α)A ∨ (β)A
4. (〈α∗〉)A⇔ A ∨ (α)(〈α∗〉)A
5. (〈A〉)B ⇔ A ∧B

Rules of Inference

1. Modus Ponens
A A⇒ B

B

2. Monotonicity
A⇒ B

(α)A⇒ (α)B

3. Bar Induction
(α)A⇒ A

(〈α∗〉)A⇒ A

The soundness of these axioms and rules is quite straightforward. The com-
pleteness proof given in [33].

The completeness problem for Game logic with dual has now been open
for about 20 years.

4 Coalitional Logic

In his dissertation ([40]), Marc Pauly extended Game Logic to a logic for rea-
soning about coalitional powers in games. This section will describe his basic
framework. The interested reader is referred to [40, 39] for a more detailed
discussion.

In Game Logic, the formula [α]φ is intended to mean that player II has
winning strategy in the determined, zero-sum game α. The intuition driving
the semantics for Game Logic is that when wραX holds, player I (alone) can
force the outcome of the game α to end in one of the states in X. Pauly
drops the assumption of determinacy of the games, weakening the power of
the individual players. In Pauly’s semantics, typically a coalition of agents is
needed for the outcome to end in some state in a set X.
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The first step is the introduce a language that can express facts about
coalitions of players. Given a finite set of agents A, the language of Coalitional
Logic has the following syntactic form

φ := A | ¬φ | φ ∨ ψ | [C]φ

where A ∈ At is an atomic proposition and C ⊆ A. The other boolean con-
nectives are defined as usual. The intended interpretation of [C]φ is that the
group of agents in C have a joint strategy to ensure that φ is true.

The semantics is essentially a Scott-Montague neighborhood model with
a neighborhood function for each subset of agents. Let W be a set of states.
An effectivity function is a map

E : (2A ×W ) → 22W

We write wECX if X ∈ E(C,w). The intended interpretation of wECX is
that in state w, the agents in C have a joint strategy to bring about one of
the states in X. An effectivity function is playable iff for all w ∈W ,

1. For all C ⊆ A, ∅ 6∈ E(C,w)
2. For all C ⊆ A W ∈ E(C,w)
3. E is A-maximal, i.e., for all X ⊆W , if X ∈ E(A, w) then X 6∈ E(∅, w)
4. E is outcome-monotonic, i.e., for all X ⊆ X ′ ⊆W , w ∈W , and C ⊆ A,

if X ∈ E(C,w) then X ′ ∈ E(C,w)
5. E is superadditive, i.e., for all subsets X1, X2 of W and sets of agents
C1, C2 such that C1 ∩C2 = ∅ and X1 ∈ E(C1, w) and X2 ∈ E(C2, w), we
have X1 ∩X2 ∈ E(C1 ∪ C2)

Pauly ([40]) shows that these conditions are exactly the conditions needed
to formalize the intuitive interpretation of the effectivity functions . Given
any strategic game G, we can define an effectivity function generated by G.
Essentially, we say that a set X is in EG(C) for some set C ⊆ A iff there is a
strategy that the agents in C can play such that for any strategy that the other
players follow, the outcome will be some element of X. Pauly showed that the
above conditions charactize all effectivity functions generated by some game.

Theorem 1 (Pauly [40]). An effectivity function E is playable iff it is the
effectivity function EG of some strategic game G.

We can now formally define a coalitional model.

Definition 5. A coalitional model is a tuple 〈W,E, V 〉 where W is a non-
empty set of states E is a playable effectivity function and V : At → P(S) is
a valuation function.

Given such a model, truth is defined as follows
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M, w |= A iff A ∈ At and w ∈ V (A)
M, w |= ¬φ iff M, s 6|= φ
M, w |= φ ∨ ψ iff M, s |= φ or M, w |= ψ
M, w |= [C]φ iff wECφ

M

where φM = {w ∈ W | M, w |= φ}. Pauly shows ([40] that the following
axiom system is sound and complete for the class of coalitional models.

(⊥) ¬[C]⊥
(>) [C]>
(N) ¬[∅]¬φ→ [N ]φ
(M) [C](φ ∧ ψ) → [C]ψ
(S) ([C1]φ1 ∧ [C2]φ2) → [C1 ∪ C2](φ1 ∧ φ2)

provided C1 ∩C2 = ∅. We also assume Modus Ponens and that from φ↔ ψ,
we can infer [C]φ↔ [C]ψ.

5 Some Applications

Our primary purpose in this survey has been to give a survey of tools used in
studying social software. However, we now proceed to give some examples of
applications. The first two examples are light.

5.1 A Knowledge Interaction

Suppose that Bob is giving a seminar and would like Ann to attend his talk;
however, he only wants Ann to attend if she is interested in the subject of his
talk, not because she is just being polite.

Why can’t Bob just tell Ann about his talk?
We suggest that Bob would like to satisfy three conditions.

1. Ka(S) (Ann knows S, where S stands for the proposition that Bob is
giving the seminar.)

2. KbKa(S) (Bob knows that Ann knows S.)
3. ¬KaKbKa(S) (Ann does not know that Bob knows that she knows S.)

Let us examine the three conditions. Clearly the first is necessary, for if
Ann does not know about the seminar she cannot go, even if she wants to.
The second, while not crucial, gives Bob peace of mind.

It is the last one which is interesting. Ann could have two reasons for going.
She could go because she is interested in the talk. Or she could go to please
Bob or out of fear that he will be offended if she does not go. If she knows
that Bob knows that she knows, she will have to allow for an expectation on
his part that she should go.
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If Bob just tells her about the seminar, then common knowledge of S will
be created, including the dreaded formula KaKbKa(S). So Bob cannot just
tell her.

But he can ask a friend discreetly to tell her. Then he will be more con-
fident that she will not feel pressured to come. This solves his problem of
achieving the three conditions 1-3.

A similar example arises with a joke about a butler in a hotel who enters
a room to clean it, and surprises a woman guest coming out of the bath.
“Excuse me, sir, and he withdraws.”

Why “sir ”? Because she can reason that if he is mistaken about the gender,
then he could not have seen her clearly, and there is no reason for her to be
embarrassed – or to complain to the hotel. The butler very intelligently saves
her from embarrassment by deliberately creating a false belief in her. (In other
words ¬KgKb(F ) and even Bg¬Kb(F ) where F stands for the fact that the
guest is female, and B is the belief operator.)

Such issues will arise again in the section on knowledge based obligation.
It is generally accepted that what people do depends on what they believe,

what they prefer, and what their options are. Their beliefs tell them what the
options are and how they should be weighed. Thus if Bob has the option of
meeting Jane for dinner or not, but does not know if she is pretty or ugly,
then in a sense he knows what his options are, to meet her or not. But there
is also a sense in which he does not know how to weigh the options. Now if he
knows that Jane is ugly, he can safely have dinner with her without worrying
that his own wife will be suspicious.

In the same way, in our earlier example, Ann does have the option of going
to the seminar or not – once she knows about it. But how she weighs that
option will depend on whether she knows that Bob knows that she knows.

5.2 The Two Horsemen and Letters of Recommendation

Suppose we want to find out which of two horses is faster. This is easy, we
race them against each other. The horse which reaches the goal first is the
faster horse. And surely this method should also tell us which horse is slower,
it is the other one. However, there is a complication which will be instructive.

Two horsemen are on a forest path chatting about something. A passerby
Mary, the mischief maker, comes along and having plenty of time and a desire
for amusement, suggests that they race against each other to a tree a short
distance away and she will give a prize of $100. However, there is an interesting
twist. She will give the $100 to the owner of the slower horse. Let us call the
two horsemen Bill and Joe. Joe’s horse can go at 35 miles per hour, whereas
Bill’s horse can only go 30 miles per hour. Since Bill has the slower horse, he
should get the $100.

The two horsemen start, but soon realize that there is a problem. Each
one is trying to go slower than the other and it is obvious that the race is
not going to finish. There is a broad smile on Mary’s face as she sees that she
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is having some amusement at no cost. Each horseman can make his horse go
at any speed upto its maximum. But he has no reason to use the maximum.
They try to go as slow as they can and so they end up in a stalemate with
both horses going at 0 miles per hour. Let x, y be the speeds respetively at
which Bill’s horse and Joe’s horse are going. Then [0,0] is a Nash equilibrium
here.

However, along comes another passerby, let us call her Pam, the problem
solver, and the situation is explained to her. She turns out to have a clever
solution. She advises the two men to switch horses. Now each man has an
incentive to go fast, because by making his competitor’s horse go faster, he is
helping his own horse to win! Joe’s horse, ridden by Bill, comes first and Bill
gets the $100 as he should. The Nash equilibrium has shofted to [35,30].

For a practical analogue of the two horses example, consider the issue of
grades and letters of recommendation. Suppose that Prof. Meyer is writing a
letter of recommendation for his student Maria and Prof. Shankar is writing
one for his student Peter. Both believe that their respective students are good,
but only good. Not very good, not excellent, just good. Both also know that
only one student can get the job or scholarship. Under this circumstance,
it is clear that both of the advisers are best off writing letters saying that
their respective student is excellent. This is strategic behaviour in a domain
familiar to all of us. Some employers will try to counter this by appealing to
third parties for an evaluation, but the close knowledge that the two advisers
have of their advisees cannot be discovered very easily. And unfortunately, we
know no obvious analogue to the strategem of exchanging horses. Certainly,
if someone were to find such an analogue, it would revolutionize the whole
process of writing letters of recommendation.

5.3 Banach-Knaster Cake Cutting Procedure

The following problem has often been mentioned in the literature. Some n
people have to share a cake and do not have access to any measuring device.
Moreover, they do not trust each other. Can they still divide the cake in a
way which seems fair to all? The Banach-Knaster last diminisher procedure
goes as follows.

Player 1 cuts out a piece p which she claims is a fair share for her. After
that p is inspected by the other n−1 people. Anyone who thinks the piece too
big may put something back into the main cake. After all n − 1 have looked
at it, one of two things must have happened. Either no one diminished p, in
which case player 1 takes p and leaves to eat it. Or else one or more people did
diminish p in which case the last diminisher takes the reduced p and leaves.
In any case, the game is now down to n− 1 people and can be repeated.

It is proved in [33] that this procedure is correct in the sense that each of
the n players has a winning strategy to make sure that he gets his fair share.
The technique used uses an n person (rather than 2-person) version of Game
Logic of section 3.
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5.4 Consensus

In 1979 Robert Aumann proved a spectacular result [1]. Suppose that two
people A,B with the same prior probability distibution receive different in-
formation about some event E. It is then likely that their probabilities for E
will diverge and that p = pA(E) could be different from q = pB(E). What
Aumann showed was that if the values p and q are common knowledge then
they must be equal. This result (somewhat extended) has the following cu-
rious consequence: suppose that A is planning to sell B a stock at a selling
price s and B is plannning to buy. Assuming that they are both motivated
by money and not, say by love or hate for the stock, the future price which A
expects the stock to have is less than s and the future price which B expects
the stock to have is more than s. But this fact is common knowledge as it is
of course common knowledge that the sale is taking place. But this violates
the theorem, the future prices cannot be different and the sale cannot take
place! This is indeed a paradoxical result.

Aumann’s result was extended by Bacharach, Cave, and Geanakoplos and
Polmarchakis [10]. The last two showed that in Aumann’s framework, if p, q
were not common knowledge they could be different, but that if the values
pA(E) and pB(E) were repeatedly exchanged by A,B, and repeatedly revised,
then the process of revision would eventually make them equal. A result by
Parikh and Krasucki [34] extends the same phenomenon to n agents who
communicate pairwise in a strongly connected graph. It is shown that personal
values of probabilities and other strongly convex functions eventually become
equal when people communicate in pairs – provided that no one is left out of
the chain.

5.5 Logic of Communication Graphs

In [29], Pacuit and Parikh introduce a multi-modal epistemic logic for reason-
ing about knowledge and communication. The language is a multi-agent modal
language with a communication modality. The formula Kiφ is interpreted as
“according to i’s current information, i knows φ”, and ♦φ will be interpreted
as “after some communications among the agents, φ becomes true”. Thus for
example, the formula

Kjφ→ ♦Kiφ

expresses that if agent j (currently) knows φ, then after some communication
agent i can come to know φ. The following example illustrates the type of
situations that the logic of communicationg graphs is intended to capture.

Consider the current situation with Bush and Porter Goss, the director
of the CIA. If Bush wants some information from a particular CIA opera-
tive, say Bob, he must get this information through Goss. Suppose that φ is
a formula representing the exact whereabouts of Bin Laden and that Bob,
the CIA operative in charge of maintaining this information knows φ. In par-
ticular, KBobφ, but suppose that at the moment, Bush does not know the
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exact whereabouts of Bin Laden (¬KBushφ). Presumably Bush can find out
the exact whereabouts of Bin Laden (♦KBushφ) by going through Goss, but
of course, we cannot find out such information (¬♦Keφ∧¬♦Krφ) since we do
not have the appropriate security clearance. Clearly, then, as a pre-requisite
for Bush learning φ, Goss will also have come to know φ. We can represent
this situation by the following formula:

¬KBushφ ∧�(KBushφ→ KGossφ)

where � is the dual of diamond. And this is because there is no direct link
between Bush and Bob, only a chain going through Goss.

It is assumed that a set At of propositional variables are understood by
(in the language of) all the agents, but only specific agents know their actual
values at the start. Thus initially, each agent has some private information
which can be shared through communication with the other agents. Now, if
agents are restricted in whom they can communicate with, then this fact will
restrict the knowledge they can acquire.

Let A be a set of agents. A communication graph is a directed graph
GA = (A, E) where E ⊆ A × A. Intuitively (i, j) ∈ E means that i can di-
rectly receive information from agent j, but without j knowing this fact. Thus
an edge between i and j in the communication graph represents a one-sided
relationship between i and j. Agent i has access to any piece of information
that agent j knows. We have introduced this ‘one sidedness’ restriction in
order to simplify our semantics, but also because such situations of one sided
learning occur naturally. A common situation that is helpful to keep in mind
is accessing a website. We can think of agent j as creating a website in which
everything he currently knows is available, and then if there is an edge be-
tween i and j then agent i can access this website without j being aware that
the site is being accessed. Another important application of course is spy-
ing, where one person accesses another’s information without the latter being
aware that information is being leaked. Naturally j may have been able to
access some other agent k’s website and had updated some of her own infor-
mation. Therefore, it is important to stress that when i accesses j’s website,
he is accessing j’s current information which may include what another agent
k knew initially.

The semantics combines ideas both from the subset models of [28] and the
history based models of Parikh and Ramanajum (see [35, 36] and Section 2.3).
The reader is refered to [29] for the details of the semantics. The satisfiability
problem for the logic of communication graphs is shown to be decidable.
Furthermore, as one may suspect, there is a connection between the structure
of the communication graph and the set of valid formulas in a model (based
on the communication graph). The following formula∧

l

Kjφ ∧ ¬Klφ→ ♦(Kiφ ∧ ¬Klφ)
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where i, j are distinct agents, l ranges over agents distinct from these two
and φ is a ground formula, states that it is possible for i to learn φ from j
without any other l learning φ. Intuitively, this should be true if i has access
to j’s website without interference from anyone. It is shown in [29] that there
is an edge from i to j in a graph G iff the above formula scheme is valid in
the model based on G.

5.6 Knowledge Based Obligation

We start with the intuition that agents cannot be expected to perform actions,
the need for which they are not aware of. In [30], Parikh, Pacuit and Cogan
present a multi-agent logic of knowledge, action and obligation. The semantics
extends the history based models described in Section 2.3. In [30], various
deontic dilemmas are described that illustrate the dependency of an agent’s
obligation on knowledge. For instance a doctor cannot be expected to treat
a patient unless she is aware of the fact that he is sick, and this creates a
secondary obligation on the patient or someone else to inform the doctor of
his situation. In other words, many obligations are situation dependent, and
are only relevant in the presence of the relevant information. This creates the
notion of knowledge based obligation.

Both the case of an absolute obligation (although dependent on informa-
tion) as well as the notion of an obligation which may be over-ridden by more
relevant information are considered. For instance a physician who is about to
inject a patient with drug d may find out that the patient is allergic to d and
that she should use d′ instead. Dealing with the second kind of case requires
a resort to non-monotonic reasoning and the notion of weak knowledge which
is stronger than plain belief, but weaker than absolute knowledge in that it
can be over-ridden. Consider the following examples:

a) Uma is a physician whose neighbour is ill. Uma does not know and has
not been informed. Uma has no obligation (as yet) to treat the neighbour.

b) Uma is a physician whose neighbour Sam is ill. The neighbour’s daughter
Ann comes to Uma’s house and tells her. Now Uma does have an obligation
to treat Sam, or perhaps call in an ambulance or a specialist.

c) Mary is a patient in St. Gibson’s hospital. Mary is having a heart attack.
The caveat which applied in case a) does not apply here. The hospital has
an obligation to be aware of Mary’s condition at all times and to provide
emergency treatment as appropriate. When there is a knowledge based
obligation, but also the obligation to have the knowledge, then we have
an obligation simpliciter.

d) Uma has a patient with a certain condition C who is in the St. Gibson
hospital mentioned above. There are two drugs d and d′ which can be
used for C, but d has a better track record. Uma is about to inject the
patient with d, but unknown to Uma, the patient is allergic to d and for
this patient d′ should be used. Nurse Rebecca is aware of the patient’s
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allergy and also that Uma is about to administer d. It is then Rebecca’s
obligation to inform Uma and to suggest that drug d′ be used in this case.

In all the cases we mentioned above, the issue of an obligation arises. This
obligation is circumstantial in the sense that in other circumstances, the obli-
gation might not apply. Moreover, the circumstances may not be fully known.
In such a situation, there may still be enough information about the circum-
stances to decide on the proper course of action. If Sam is ill, Uma needs to
know that he is ill, and the nature of his symptoms, but not where Sam went
to school.

Suppose that you want to formalize Uma’s reasoning in the above exam-
ples, and formally prove that she is obliged to treat Sam in example b. This
has in fact been one of the goals of standard deontic logic. See [23, 22] and
references therein for an uptodate discussion of deontic logic. Getting back to
formalizing Uma’s reasoning, one of the main points discussed above is that
Uma’s obligation arises only after she learns of her neighbor’s illness. In other
words, her obligation depends on her having the appropriate knowledge. In
much of the deontic logic literature, an agent’s knowledge is only informally
represented or the discussion is focused on representing epistemic obligations,
i.e., what an agent ‘ought to know’, see [26] for a recent discussion. The logic in
[30] is intended to capture the dependency of individual obligation on knowl-
edge. The semantics extends the history based models described in Section
2.3 with PDL-style action modalities and a deontic operator. Refer to [30]
for a detailed discussion of the semantics.

6 Conclusion

We end this paper with an amusing story about Mark Twain.

“ ‘There was a mystery,’ said I. ‘We were twins, and one day when
we were two weeks old – that is, he was one week old and I was one
week old – we got mixed up in the bathtub, and one of us drowned.
We never could tell which. One of us had a strawberry birthmark on
the back of his hand. There it is on my hand. This is the one that was
drowned. There’s no doubt about it.’
“ ‘Where’s the mystery?’ he said.
“ ‘Why, don’t you see how stupid it was to bury the wrong twin?’ ” I
answered.”
Mark Twain in a 1906 interview reported by the New York Times

The NYTimes reporter was not fast enough on his feet to hoist Twain on
his own petard and ask what difference it made which twin was buried if people
could not tell them apart (even after the drowning). But Twain’s joke, like
other deep jokes (by Groucho Marx or by the Sufi Mullah Nasruddin) leads
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into important issues like why we need names for people, why the government
needs social security numbers, why identity theft is possible.

Who am I? is normally a question which typically a Zen Buddhist asks.
But Who are you? is a question which others ask quite often. And this is
because societal algorithms depend very much on identity. The bank does not
want to allow others to withdraw funds from our accounts, or to allow us to
withdraw funds from the accounts of others. Questions can be raised here at
two levels. One level is why algorithms work only when identity is established.
But a deeper level is what Game theoretic reasons lie behind such algorithms
in the first place. For instance in the play Romeo and Juliet when a Montressor
has killed a Capulet, it is fine to kill another Montressor to revenge oneself.
So the identity which matters here is not personal, but based on clan. There
is a game between the two clans, where a threat to kill one member of a
clan may be a deterrent on another. This is perhaps a foolish “algorithm”,
where one Montressor is killed instead of another, but favours are also often
dealt out for similar reasons. These issues of the importance of (personal or
tribal) identity to the correctness and relevance of games are deep and belong
to another (future) paper. But we hasten to point out that they are urgent.
When Sunni Arabs explode a bomb at a Shia mosque in Iraq, they may have
nothing against the individual Shias praying at the mosque. They are sending
a message to the group. If we want to solve such problems, we will surely need
to go into the question of interactions where what matters is group identity
and not personal identity.
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