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Abstract

Epistemic game theory has shown the importance of informational contexts to understand

strategic interaction. We propose a general framework to analyze how such contexts may arise.

The idea is to view informational contexts as the fixed-points of iterated, “rational responses”

to incoming information about the agents’ possible choices. We show general conditions for

stabilization of such sequences of rational responses, in terms of structural properties of both

the decision rule and the information update policy. In the process, we generalize existing rules

for information updates used in the dynamic-epistemic logic literature. We then apply this

framework to admissibility. We give a dynamic analysis of a well-known “paradox” arising from

this choice rule, characterize stabilization of iterated rational response to admissibility under two

different information update rules, and argue that these embody two different ways to respond

to reasons in games.

1 Background and Motivation

An increasingly popular1 view is that “the fundamental insight of game theory [is] that a rational

player must take into account that the players reason about each other in deciding how to play” [4,

pg. 81]. Exactly how the players (should) incorporate the fact that they are interacting with other

(actively reasoning) agents into their own decision making process is the subject of much debate.

A variety of frameworks have been put forward to explicitly model the reasoning of rational agents

1But, of course, not uncontroversial: Consider, for example, the following quote of Kadane and Larkey [20, pg.
239]: “It is true that a subjectivist Bayesian will have an opinion not only on his opponent’s behavior, but also on
his opponent’s belief about his own behavior, his opponent’s belief about his belief about his opponent’s behavior,
etc. (He also has opinions about the phase of the moon, tomorrow’s weather and the winner of the next Superbowl.)
However, in a single-play game, all aspects of his opinion except his opinion about his opponent’s behavior are
irrelevant, and can be ignored in the analysis by integrating them out of the joint opinion.”
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in a strategic situation. Key examples include Brian Skyrms’ models of “dynamic deliberation”

[30], Ken Binmore’s analysis of “eductive reasoning” [9], and Robin Cubitt and Robert Sugden’s

“common modes of reasoning” [15]. Although the details of these frameworks are quite different2,

they share a common line of thought: Contrary to classical game theory, solution concepts are

no longer the basic object of study. Instead, the “rational solutions” of a game are the result of

individual (rational) decisions in specific informational “contexts”.

This perspective on the foundations of game theory is best exemplified by the so-called epistemic

program in game theory (cf. [12]). The central thesis here is that the basic mathematical model of a

game should include an explicit parameter describing the players’ informational attitudes. However,

this broadly decision-theoretic stance does not simply reduce the question of decision-making in

interaction to that of rational decision making in the face of uncertainty or ignorance. Crucially,

higher-order information (belief about beliefs, etc.) are key components of the informational context

of a game3. Of course, different contexts of a game can lead to drastically different outcomes. But

this means that the informational contexts themselves are open to rational criticism:

“It is important to understand that we have two forms of irrationality [...]. For us,

a player is rational if he optimizes and also rules nothing out. So irrationality might

mean not optimizing. But it can also mean optimizing while not considering everything

possible.” [13, pg. 314, our emphasis]

Thus, a player can be rationally criticized for not choosing what is best given one’s information, but

also for not reasoning in or to a “proper” context. Of course, what counts as a “proper” context is

debatable. There might be rational pressure for or against making certain substantive assumptions4

2Skyrms assumes the players deliberate by calculating their expected utility and then use this new information to
recalculate their probabilities about the states of the world and recalculate their expected utilities. Binmore models
the players as Turing machines that can compute their rational choices. And, Cubitt and Sugden build on David
Lewis’ analysis of common knowledge in terms (inductive/deductive) rules that are commonly accepted among all
the players.

3And so, strategic behavior depends, in part, on the players’ higher-order beliefs. However, some care is needed
about what precisely is being claimed. The well-known email game of Ariel Rubinstein [28] demonstrates that
misspecification of arbitrarily high-orders of beliefs can have a large impact on (predicted) strategic behavior. So,
there are simple examples where (predicted) strategic behavior is too sensitive to the players higher-order beliefs. We
are not claiming that a rational agent is required to consider all higher-order beliefs, but only that a rational player
recognizes that her opponents are actively reasoning rational agents, and this means that a rational player does take
into account some of her higher-order beliefs (eg., what she believes her opponents believes that she will do) as she
deliberates. Precisely, “how much” higher-order information should be taken into account is a very interesting open
question which we set aside for this paper.

4The notion of substantive assumption is explored in more detail in [27], and the references therein.

2



about the beliefs of one’s opponents, for instance to always entertain the possibility that one of the

players might not choose optimally.

Recently, researchers using methods from dynamic-epistemic logic have taken steps into un-

derstanding this idea of reasoning to a “proper” or “rational” context [8, 7, 6, 34]. Building on

this literature, and, more generally, on the rich repertoire of notions of belief (eg., safe belief,

strong belief) and informative actions (eg., radical upgrade, conservative upgrade) from modern

dynamic-epistemic logic5, we provide here a general characterization of when players can or cannot

rationally reason to specific informational contexts (Section 2). We then apply this framework

to issues surrounding the epistemic characterization of iterated elimination of weakly dominated

strategies (IEWDS), aka iterated admissibility (Section 3).

2 Belief Dynamics for Strategic Games

The main idea of this paper is to understand well-known solutions concepts not in terms of fixed

informational contexts—for instance, models (eg., type spaces or epistemic models) satisfying ra-

tionality and common belief of rationality—but rather as a result of a dynamic, interactive process

of information exchanges. It is important to note that the goal is not to represent some type of

“pre-play communication” or form of “cheap talk”. Instead, the goal is to represent the process of

rational deliberation that takes the players from the ex ante stage to the ex interim stage of deci-

sion making. Thus, the “informational exchanges” are the result of the players practical reasoning

about what they should do, given their current beliefs. In this section, we introduce our framework

incorporating ideas from the extensive literature on dynamic logics of belief revision (cf. [33, 6])

and recent work on a “reasoning-based approach to game theory” [16, 15].

2.1 Describing the Informational Context

Let G = 〈N, {Si}i∈N , ui〉 be a strategic game.6 The informational context of a game describes

the players’ hard and soft information about the possible outcomes of the game. The players have

opinions about which of states (each state is associated with an outcome of the game) are more

5The reader not familiar with this area can consult the recent textbook [33] for details.
6We assume the reader is familiar with the basic concepts of game theory.(for example, strategic games and various

solution concepts, such as iterated removal of strictly (weakly) dominated strategies).
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or less plausible among the ones they have not ruled out. Since we are representing the rational

deliberation process, we do not assume that the players have made up their minds about which

actions they will choose. We start with the simplest model of beliefs: a set of states where each

state is associated with a possible outcome of the game and a single plausibility ordering (which is

reflexive, transitive and connected) w � v that says “v is at least as plausible as w.”

Originally used as a semantics for conditionals (cf. [22]), these plausibility models have been

extensively used by logicians [32, 33, 6], game theorists [10] and computer scientists [11, 21] to

represent rational agents’ (all-out) beliefs. Thus, we take for granted that they provide natural

models of (multiagent) beliefs and focus on how they can be used to represent “rational deliberation”

in a game situation. We first settle on some notation.

Definition 2.1 (Strategy Functions and Propositions) Let W be a set of states and G =

〈N, {Si}i∈N , ui〉 a strategic game. A strategy function on W for G is a function σ : W → ΠiSi

assigning strategy profiles to each state. To simplify notation, we write σi(w) for (σ(w))i (similarly,

write σ−i(w) for the sequence of strategies of all players except i). For each a ∈ Si, we write

P ia = {w ∈W | σi(w) = a} for the set of states where player i chooses a (this is the proposition “i

selects strategy a”). Furthermore, we write P ia ∧P
j
b for the set-theoretic intersection of P ia and P jb ,

P ia∨P
j
b for the set-theoretic union of P ia and P jb and ¬P ia for the set-theoretic complement of P ia. /

We can now define the informational context of a game.

Definition 2.2 (Informational Context of a Game) Let G = 〈N, {Si}i∈N , ui〉 be a strategic

form game. An informational context of G is a plausibility model MG = 〈W,�, σ〉 where � is

a connected, reflexive, transitive and well-founded7 relation on W and σ is a strategy function on

W for G. We also say MG is a model of G. /

Note that there is only one plausibility ordering in the above model, yet we are interested in

games with more than one player. There are different ways to interpret the fact that there is only

one plausibility ordering. The models can represent the beliefs of one of the players before she

has made up her mind about which option to choose. Alternatively, we can think the model as

7Well-foundedness is only needed to ensure that for any set X, the set of minimal elements in X is nonempty.
This is important only when W is infinite – and there are ways around this in current logics. Moreover, the condition
of connectedness can also be lifted, but we use it here for convenience.
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describing a stage of the rational deliberation of all the players starting from an initial model where

all the players have the same beliefs (i.e., the common prior). The private information about which

possibilities the players consider possible given their actual choice can then be defined from the

conditional beliefs. For X ⊆ W , let Min�(X) = {v ∈ X | v � w for all w ∈ X } be the set of

minimal elements of X according to �.

Definition 2.3 (Belief and Conditional Belief) Let MG = 〈W,�, σ〉 be a model of a game

G. We define the following. Let E and F be subsets of W , we say

• E is believed conditional on F in MG, denoted MG |= BF (E), provided Min�(F ) ⊆ E.

Also, we say E is believed inMG if E is believed conditional on W . Thus, E is believed provided

Min�(W ) ⊆ E /

Other notions of beliefs have been studied (eg. strong belief and safe belief), but, for this paper, we

keep things simple and focus on the above standard notions.

Of course, this model can (and has: see [6, 33]) be extended to include beliefs for each of

the players, an explicit relation representing the player(s) hard information or by making the

plausibility orders state-dependent. To keep things simple, we focus on models with a single

plausibility ordering.

2.2 A Primer on Belief Dynamics

We are not interested in informational contexts per se, but rather how the informational context

changes during the process of rational deliberation. The type of change we are interested in is

how a model MG of a game G incorporates new information about what the players should do

(according to a particular choice rule). As is well-known from the belief revision literature, there

are many ways to transform an epistemic-doxastic model given some new information [26]. We

do not have the space to survey this entire literature here (see [33, 5] for modern introductions).

Instead we sketch some key ideas. The picture below illustrates different ways a plausibility model

can incorporate the proposition ϕ (thought of a set of states).
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ϕ

↑(ϕ) : A ≺ C ≺ D ≺ B ∪ E

A

B

C

D

E

ϕ

⇑(ϕ) : A ≺ B ≺ C ≺ D ≺ E

The general approach is to define a way of transforming a plausibility modelMG given a proposition

ϕ. That is, the idea is to define a transformation τ that maps plausibility models and propositions

to plausibility models (we write Mτ(ϕ)
G for τ(MG, ϕ)). So, given a model MG of a game G and

a proposition ϕ describing what the players (might/should/will) do, Mτ(ϕ)
G is a new informational

context taking this information into account. Different definitions of τ represent the different

attitudes an agent can take towards the incoming information. For example, the operation on

the left is the well-known public announcement operation [23, 17] which assumes that the players

considers the source of ϕ infallible ruling out any possibilities that are inconsistent with ϕ. For the

other transformations, while the players do trust the source of ϕ, they do not treat the source as

infallible. These dynamic operations satisfy a number of interesting logical principles [33, 5] which

we do not discuss in this paper.

We are interested in the operations that transform the informational context as the players

deliberate about what they should do in a game situation. In each informational context (viewed as

describing one stage of the deliberation process), the players determine which options are “rationally

permissible” and which options the players ought to avoid (which is guided by some fixed rules

of practical reasoning or a choice rule, cf. the discussion in the next section). This leads to a

transformation of the informational context as the players adopt the relevant beliefs about the

outcome of their practical reasoning. In this new informational context, the players again think

about what they should do leading to another transformation. The main question is does this

process stabilize?

The answer to this question will depend on a number of factors. The general picture is

M0
τ(D0)
=⇒ M1

τ(D1)
=⇒ M2

τ(D2)
=⇒ · · · τ(Dn)

=⇒ Mn+1=⇒· · ·
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where each Di is some proposition and τ is model transformer (eg., public announcement, radical

upgrade or conservative upgrade). Two questions are important for the analysis of this process.

First, what type of transformations are being used by the players? For example, if τ is a public

announcement, then it is not hard to see that, for purely logical reasons, this process must eventually

stop at a limit model (see [6] for a discussion and proof). The second question is where do the

propositions Di come from? To see why this matters, consider the situation where you iteratively

perform a radical upgrade with p and ¬p (i.e., ⇑(p),⇑(¬p), . . .). Of course, this sequence of upgrades

never stabilizes. However, in the context of reasoning about what to do in a game situation, this

situation may not arise because of special properties of the choice rule that is being used to describe

(or guide) the players’ decisions.

Suspending Judgement It is well-known that, in general, there are no rational principles of

decision making (under ignorance or uncertainty) which always recommend a unique choice. In

particular, it is not hard to find a game and an informational context where there is at least

one player without a unique “rational choice” (see the discussion in the next section for concrete

examples). How should a rational player incorporate the information that more than one action

is classified as “choice-worthy” or “rationally permissible” (according to some choice rule) for her

opponent(s)? One natural response is to suspend judgement about which options the relevant

players will pick. Making use of a well-known distinction of Edna Ullmann-Margalit and Sidney

Morgenbesser [31], the assumption that all players are rational can help determine which options

the player will choose, but rationality alone does not help determined which of the rationally

permissible options will be “picked”. This line of thought led Cubitt and Sugden to impose a

“privacy of tie breaking” property which says that players cannot know that her opponent will not

pick an option that is classified as “choice-worthy” [15, pg. 8]. Wlodeck Rabinovich takes this even

further and argues that from the principle of indifference, players must assign equal probability

to all choice-worthy options [25]. What interests us is how to transform a plausibility model to

incorporate the fact that there is a set of choice-worthy options for (some of) the players.

We do not offer an extended discussion of belief suspension here, but suggest that a generaliza-

tion of conservative upgrade is the notion we are looking for (Wes Holliday makes the same point

in [19]). The idea is to do an upgrade with a set of propositions {ϕ1, . . . , ϕn} by letting the most

plausible worlds be the union of each of the most plausible ϕi worlds. Formally,
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Definition 2.4 (Generalized Conservative Upgrade.) Let M = 〈W,�, σ〉 be a plausibility

model and {ϕ1, . . . , ϕn} a set of propositions. Define M↑{ϕ1...,ϕn} = 〈W ↑{ϕ1...,ϕn},�↑{ϕ1...,ϕn}

, σ↑{ϕ1...,ϕn}〉 as follows: W ↑{ϕ1,...,ϕn} = W , σ↑{ϕ1...,ϕn} = σ and for all i ∈ N and w ∈ W ↑{ϕ1,...,ϕn}

we have: let B = Min�(ϕ1) ∪Min�(ϕ2) ∪ · · · ∪Min�(ϕn)

1. If v ∈ B then v �↑{ϕ1,...,ϕn} x for all x ∈W , and

2. for all x, y ∈W −B, x �↑{ϕ1,...,ϕn} y iff x � y. /

Note that this is indeed a generalizaiton of conservative upgrade, since in general, best(ϕ1) ∪

· · · best(ϕn) 6= best(ϕ1 ∨ · · · ∨ϕn). Thus, this is not the same as performing a conservative upgrade

with ϕ1 ∨ · · · ∨ ϕn (where the most plausible worlds are the most plausible worlds satisfying at

least one of the ϕi). A simple suspension of a belief in ϕ can be represented as ↑ {ϕ,¬ϕ}. This

transformation is illustrated below.

Remembering Reasons A generalized conservative upgrade of {ϕ1, . . . , ϕn} “flattens” out the

players belief relative to this set of propositions. After the upgrade, the player will consider each

of the ϕi equally plausible. But this means that, if w is a most plausible ϕi-world and v is a

most plausible ϕj-world, the player forgets whatever reason she had for considering state w more

plausible than v (or vice versa). This suggests a generalization of radical upgrade (cf. the picture

above on the right) where the player(s) remember their earlier reasons for considering some states

more plausible than others. Again the idea is to upgrade with a set of propositions {ϕ1, . . . , ϕn} as

above, but maintain the original ordering within the union of the most plausible ϕi-worlds.

Definition 2.5 (Generalized Radical Upgrade) Let M = 〈W,�, σ〉 be a plausibility model

and {ϕ1, . . . , ϕn} a set of propositions. DefineM⇑{ϕ1...,ϕn} = 〈W⇑{ϕ1...,ϕn},�⇑{ϕ1...,ϕn}, σ⇑{ϕ1...,ϕn}〉

as follows: W⇑{ϕ1,...,ϕn} = W , σ⇑{ϕ1...,ϕn} = σ and for all i ∈ N and w ∈ W⇑{ϕ1,...,ϕn} we have: let

B = Min�(ϕ1) ∪Min�(ϕ2) ∪ · · · ∪Min�(ϕn)

1. for all v ∈ B, v �⇑{ϕ1,...,ϕn} x for all x ∈W −B,

2. for all x, y ∈ B, x �⇑{ϕ1,...,ϕn} y iff x � y, and

3. for all x, y ∈W −B, x �⇑{ϕ1,...,ϕn} y iff x � y. /
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We illustrate both transformations below:

ϕ2

ϕ1
A B

C D
E

F G

↑{ϕ1, ϕ2} : A ∪ E ≺ B ≺ C ∪D ≺ F ∪G

ϕ2

ϕ1
A B

C D
E

F G

⇑{ϕ1, ϕ2} : A ≺ E ≺ B ≺ C ∪D ≺ F ∪G

We will see other examples of these transformation in the next section. These transforma-

tions can be logically analyzed using standard techniques from dynamic epistemic/doxastic logic

literature (eg., the “reduction axiom method”).

Theorem 2.6 Both generalized conservative upgrade and generalized radical upgrade can be com-

pletely axiomatized over class of plausibility models over a static language including operators for

belief, conditional belief and knowledge.

For the proof, we need to generalize the reduction axioms for radical and conservative upgrade (see

[33] for a discussion of this method of proving completeness). Since the logic of these transformations

is not the focus of this paper, we do not include the proof here.

2.3 Practical Reasoning in Games

We do not intend the dynamic operations of belief change discussed in the previous section to

directly represent the (practical) reasoning of the players as they deliberate about what to do in

a game situation. In fact, we do not represent directly any formal model of practical reasoning.

Instead, following Cubitt and Sugden [15], we assume that during each stage of rational deliberation,

the players can categorize their available options. Thus, we treat practical reasoning as a “black

box” and focus on general choice rules that are intended to describe rational decision making (under

ignorance). To make this precise, we need some notation:

Definition 2.7 (Strategies in Play) Let G = 〈N, {Si}i∈N , {ui}i∈N 〉 be a strategic game and

MG = 〈W,�, σ〉 an informational context of G. For each i ∈ N , the strategies in play for i at w

is the set
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S−i(MG) = {s−i ∈ Πj 6=iSj | there is a w ∈Min�(W ) such that σ−i(w) = s−i} /

This set S−i(MG) is the strategies that player i still believes are possible at some stage of the

deliberation process represented by the model MG. Given these beliefs, we assume that each

player can categorize her available options:

Definition 2.8 (Categorization) Let G = 〈N, {Si}i∈N , {ui}i∈N 〉 be a strategic game andMG =

〈W,�, σ〉 an informational context ofG. A categorization for player i inMG is a pair Si(MG, w) =

(S+
i , S

−
i ) where S+

i ∪ S
−
i ⊆ Si and

for each a ∈ Si, if there is no v ∈W with σi(v) = a then a ∈ S−i

If Si(MG) = (S+
i , S

−
i ), we write S+

i (MG) for S+
i and S−i (MG) for S−i . Also, we write S(MG) for

the sequence of categorizations (S1(MG), . . . ,Sn(MG)). /

Note that, in general, a categorization need not be a partition (i.e., S+
i ∪ S

−
i = Si). See [16]

for an example of such a categorization. However, in the remainder of this paper, we focus on

familiar choice rules where the categorization does form a partition. Typically, we are interested in

a “categorization method”, i.e., rules for defining a categorization given any game. Two standard

examples are weak and strong dominance: Let G = 〈N, {Si}i∈N , {ui}i∈N 〉 be a strategic game and

MG an model of G. Then,

Strong Dominance (pure strategies) For each i and a ∈ Si,

a ∈ S−i iff there is b ∈ Si such that for all s−i ∈ S−i(MG), ui(s−i, b) > ui(s−i, a)

and S+
i = Si − S−i .

Weak Dominance (pure strategies) For each i and a ∈ Si,

a ∈ S−i iff there is b ∈ Si such that for all s−i ∈ S−i(MG), ui(s−i, b) ≥ ui(s−i, a) and there is some

s−i ∈ S−i(MG) such that ui(s−i, b) > ui(s−i, a)

and S+
i = Si − S−i .

Both of the above definitions can be modified to cover strict/weak dominance by mixed strate-

gies, but we leave issues about how to incorporate probabilities into the framework sketched in this

paper for another time.
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2.4 Responding to Practical Reasoning

In this section, we merge the two perspectives (rational dynamics of belief from Section 2.2 and

context-dependent practical reasoning of Section 2.3. The idea is that the “rational response” for

a player to a given categorization is to transform the current informational context (using one of

the transformations from the Section 2.2) by incorporating this information. To make this precise,

we need to describe a categorization.

Definition 2.9 (Language for a Game) Let G = 〈N, {Si}i∈N , {ui}i∈N 〉 be a strategic game.

Without loss of generality, assume that each of the Si are disjoint and let AtG = {P ia | a ∈ Si} be a

set of atomic formulas (one for each a ∈ Si). The propositional language for G, denoted LG, is the

smallest set of formulas containing AtG and closed under the boolean connectives ¬ and ∧. The

other boolean connectives (∨, →, ↔) are defined as usual. /

Formulas of LG are intended to describe possible outcomes of the game. Given an informational

context of a game MG, the formulas ϕ ∈ LG is can be associated with subsets of the set of states

in the usual way:

Definition 2.10 (Interpretation of LG) Let G be a strategic game, MG = 〈W,�, σ〉 an infor-

mational context of G and LG a propositional language for G. We define a map [[·]]MG
: LG → ℘(W )

by induction on the structure of LG as follows: [[P ia]]MG
= {w | σ(w)i = a}, [[¬ϕ]]MG

= W − [[ϕ]]MG

and [[ϕ ∧ ψ]]MG
= [[ϕ]]MG

∩ [[ψ]]MG
. /

Let X and Y be two sets of propositions, we define X ∧ Y := {ϕ ∧ ψ | ϕ ∈ X,ψ ∈ Y }

Definition 2.11 (Describing a categorization) Let G be a game and MG an informational

context of G. Given a categorization S(MG), let Do(S(MG)) denote the set of formulas that

describe S. This set is defined as follows: for each i ∈ N let:

Doi(Si(MG)) = {P ia | a ∈ S+
i (MG)} ∪ {¬P ib | b ∈ S−i (MG)}

Then define Do(S(MG)) = Doi(Si(MG))
∧
Do2(S2(MG)) · · ·

∧
Don(Sn(MG)). /

The general project is to understand the interaction between types of categorizations (eg., choice

rules) and types of model transformations (representing the rational deliberation process). One key
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question, is does (and under what conditions) a deliberation process stabilize? There are a number

of ways to make precise what it means to stabilize (see [6] for a discussion). In general there are

many (rational) ways to incorporate a (description of) a categorization into a plausibility model.

Section 2.2 discussed two natural update rules (generalized conservative upgrade and generalized

radical upgrade). In the remainder of this section, we discuss a number of abstract principles which

guarantee that a rational deliberation will stabilize. We start by being more precise about the

“rational deliberation process” and what it means to stabilize.

Definition 2.12 (Stable in Beliefs) SupposeM = 〈W,�, σ〉 andM′ = 〈W,�′, σ′〉 are two plau-

sibility models based on the same set of states8. We say M and M′ are stable with respect to

the players’ beliefs if the set of propositions that are believed inM is the same as those believed

inM′. Equivalent,M andM′ are stable with respect to beliefs provided Min�(W ) = Min�′(W ).

We write M≡BM′ is M and M′ are stable with respect to beliefs. /

In this paper, it is enough to define stabilization in terms of the players simple beliefs. This is

because, during the process of deliberation, we only incorporate ground information about what

the players are going to do (as opposed to higher-order information9). We are now ready to formally

define a “deliberation sequence”:

Definition 2.13 (Upgrade Sequence) Given a game G and an informational context MG, an

upgrade sequence of type τ , induced byMG is an infinite sequence of plausibility models (Mm)m∈N

defined as follows:

M0 =MG Mm+1 = τ(Mm, Do(Mm))

An upgrade sequence stabilizes if there is an n ≥ 0 such that Mn =Mn+1. /

The next section has a number of examples of upgrade streams, some that stabilize and others

that do not stabilize. We now discuss some abstract principles that ensure that the categorizations

are “sensitive” to the players beliefs and that the players respond to the categorizations in the

appropriate way. There are two main reasons why an upgrade stream would stabilize. The first is

8So, we assume that the models agree about which outcomes of the game have not been ruled out.
9An interesting extension would be to start with a multiagent belief model and allow players to not only incorporate

information about which options are “choice-worthy”, but also what beliefs their opponents may have. We leave this
extension for future work and focus on setting up the basic framework here.
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due to the properties of the transformation (for example, it is clear that upgrade streams with public

announcements always stabilize). The second is because the choice rule satisfies a monotonicity

property so that, eventually, the categorizations stabilizes, and no new transformations can change

the plausibility ordering.

To state these properties more precisely, we need some notation. Let U be a fixed set of states

and G a fixed strategic game. We restrict attention to transformations between models of G whose

states come from the universe of states U . Let MG be the set of all such plausibility models. A

model transformation then is a function that maps a model of G and a finite set of formulas of LG

to a model in MG:

τ : MG × ℘<ω(LG)→MG

where ℘<ω(LG) is the set of finite subsets of LG. Of course, not all transformations τ make sense in

this context. We give a number of abstract principles that τ must satisfy so that the categorizations

and belief transformation τ are connected in the “right way”. Let X = {ϕ1, . . . , ϕn} be a finite set

of LG formulas M∈MG.

A1 The operation τ depends only on the truth set of the formulas: If for each i = 1, . . . , n,

[[ϕi]]M = [[ψi]]M, then τ(M,X ) = τ(M, {ψ1, . . . , ψn})

A2 The operation τ is idempotent10 in the language LG: τ(M,X ) = τ(Mτ(X ),X )

Property A1 says that the belief transformations depend only on the proposition expressed by

a formula ϕ by treating equivalent formulas the same way. The second property A2 says that

receiving the exact same information twice does not have any effect on the players’ beliefs. These

are general properties of the belief transformation. Certainly, there are other natural properties

that one may want to impose (for example, variants of the AGM postulates [1]), but, for the time

being, we are interested in the minimal principles needed to prove a stabilization result.

The next set of properties make sure that the transformation respond “properly” to a cate-

gorization. First, we need a property to guarantee that the categorizations only depend on the

players’ beliefs:

C1 If M≡BM′ then S(M) = S(M′).

10Here it is crucial that the language LG does not contain any modalities.
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Finally, we need to ensure that in all upgrade sequences respond to the categorizations in the

right way.

C2− For any upgrade sequence (Mn)n∈N in τ , if a ∈ S−i (Mn) then Mn+1 |= B¬P ai

C2+ For any upgrade sequence (Mn)n∈N in τ , if a ∈ S+
i (Mn) then Mn+1 |= ¬B¬P ai

Mon− For any upgrade sequence (Mn)n∈N, for all n ≥ 0, for all players i ∈ N , S−i (Mn) ⊆

S−i (Mn+1)

Mon+ Either for all modelsMG, S+
i (MG) = Si−S−i (MG) or for any upgrade sequence (Mn)n∈N,

for all n ≥ 0, for all players i ∈ N , S+
i (Mn) ⊆ S+

i (Mn+1)

In particular, Mon− means that once an option for a player is classified as “not rationally

permissible”, it cannot, at a later stage of the deliberation process, drop this classification.

Theorem 2.14 Suppose that G is a finite game and all of the above properties are satisfied. Then

every upgrade sequence (Mn)n∈N stabilizes.

Proof. Let G = 〈N, {Si}i∈N , {ui}i∈N 〉 be a finite strategic game. By properties Mon− and Mon+

we have either for all upgrade streams (Mn)n∈N and players i ∈ N ,

1. S−i (M0) ⊆ S−i (M1) ⊆ · · ·S−i (Mn) ⊆ · · · is an infinitely increasing sequence of subsets of Si

and S+
i (M0) ⊇ S+

i (M1) ⊇ · · ·S+
i (Mn) ⊇ · · · is an infinite decreasing sequence of subsets of

Si; or

2. Both, S−i (M0) ⊆ S−i (M1) ⊆ · · ·S−i (Mn) ⊆ · · · and S+
i (M0) ⊆ S+

i (M1) ⊆ · · ·S+
i (Mn) ⊆

· · · are infinite increasing sequences of subsets of Si.

Since each Si is assumed to be finite, for each player i, there is a ni such that S−i (Mni) = S−i (Mni+i)

and S+
i (Mni) = S+

i (Mni+i). Let m be the maximum of {ni | i ∈ N}. Then, we have S(Mm) =

S(Mm+1). All that remains is to show that for all x > m, Mx = τ(Mx). This follows by an easy

induction on x. The key calculation is: for each x ∈ N, let Dx be the appropriate description of

S(Mx).
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Mm+2 = τ(Mm+1,Dm+1) = τ(Mτ(Dm)
n ,Dm+1)

= τ(Mτ(Dm)
m ,Dm) (since S(Mm) = S(Mm+1))

= τ(Mm,Dm) =Mm+1

This concludes the proof. qed

The role of monotonicity of the choice has been noticed by a number of researchers (see [3] for a

discussion). We do not discuss the proof here11, but note some interesting corollaries:

Corollary 2.15 If the categorization method is strict dominance, then any upgrade sequence of

type τ stabilizes, where τ is any of the transformations discussed in this paper (eg., public an-

nouncement, (generalized) radical upgrade and (generalized) conservative upgrade).

Corollary 2.16 If τ is public announcement or (generalized) radical upgrade, then any belief

sensitive categorization method stabilizes on any upgrade sequence.

This generalizes van Benthem’s analysis of rational dynamics [8] to soft information, both in terms

of attitudes and announcements. It also explains Apt and Zvesper’s results about stabilization of

beliefs, even for admissibility [2]: they use public announcements, which stabilizes beliefs.

3 Case Study: Admissibility

Larry Samuelson [29] pointed out an explicit puzzle surrounding the epistemic foundations of

IEWDS - also known as the IA solution [13]. He showed (among other things) that there is

no epistemic model of the following game with at least one state satisfying “common knowledge

of admissibility” (i.e., a state where there is common knowledge that the players do not play a

strategy that is weakly dominated).

11The proof is available upon request.
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Ann

Bob

L R

u 1, 1 1, 0

d 1, 0 0, 1

The general framework introduced above offers a new, dynamic perspective on this result, and on

reasoning with admissibility more generally.12

3.1 Generalized Conservative Upgrade with Admissibility

Dynamically, the non-existence of a model of the above game in which admissibility is common

belief13 corresponds to non-stabilization of upgrade streams. Agents are not able to reason their

way to stable, common belief in admissibility. To capture this intuition we need to work with a

non-monotonic upgrade rule. We choose here generalized conservative upgrade. We explain in more

detail this modeling choice in discussion at the end of Section 3.2.

Observation 3.1 Starting with the initial full model of the above game,14 conservative upgrade

stream of rational response with admissibility does not stabilize.

u, L u,R

d, L d,R

M0

d, L d,R

u, L u,R

M1

↑D0

d, L d,R

u,R

u, L

M2

↑D1

d,R

u,R

u, L d, L

M3

↑D2
u, L u,R

d, L d,R

M4 =M0

↑D3

The looping stream of conservative upgrades is illustrated in the figure above. The formal details

are in the appendix. Intuitively: From M0 to M2 the agents have reasons to exclude d and R,

leading them to commonly believe that u, L is played. At that stage, however, d is admissible for

Ann, canceling the reason that agents had to rule out this strategy. The rational response here is

thus to suspend judgment on d, leading to M3. In this new model, the agents are similarly led to

12We do not to provide an alternative epistemic characterization of this solution concept. Both [13] and [18] have
convincing results here. Our goal is to use this solution concept as illustration of our general approach.

13We use common plain beliefs here instead of common knowledge.
14A full model is one where it is common knowledge that each of the outcomes of the game equally likely (i.e., all

outcomes of the game are in the model and are equally plausible).
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suspend judgment on not playing R, bringing them back to M0. This process loops forever; the

agents’ reasoning does not stabilize.

A corollary of Observation 3.1 is that common belief in admissibility is not sufficient for sta-

bilization of upgrade streams. Stabilization also require that all and only those profiles that are

most plausible are admissible. Admissibility needs to be a common assumption [14]. To show this

we need the following notion.

Definition 3.2 (Tight admissible sets) A set of strategy profile S is tightly admissible iff, for

all agents i:

1. All strategies σi for σ ∈ S are admissible given the σ′−i in S−i and;

2. no other strategy s′i is admissible given the σ′−i in S−i. /

It is a straightforward observation that if an upgrade stream based on admissibility stabilizes, then

the most plausible profiles in its fixed-point constitute a tightly admissible set. The converse is also

true: if the most plausible profiles in a given model constitute a tightly admissible set, then any

upgrade sequence starting from that model and based on admissibility stabilizes

Tight admissible sets have a natural epistemic characterization:

Definition 3.3 (Levels of conditional beliefs) Let M be a model for a given game. We write

B0
i for {w | w � w′ for all w′ ∈W} and Bn+1 for {w | w � w′ for all w′ ∈W −Bn}. /

The set B0 is just the set of most plausible states (the “simple” beliefs). The set Bn+1 fixes beliefs

conditional on not being in any of the state in
⋃

0≤nB
n. We writeM |= BnAdmj whenever j plays

an admissible strategy in all most plausible states at level n.

Observation 3.4 Let M be a model for a given game.

(i) {s : there is a w ∈Min�[W ] with σ(w) = s} is a tight admissible set.

(ii) M |= B0
∧
iAdmi ∧

∧
n>0B

n
∧
i ¬Admi

Proof. Unpacking the definitions. qed
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Tight admissible sets are thus those that are played exactly under, first, common belief in admis-

sibility and, second, common conditional beliefs, for any degree n > 0, that no other strategies

would have been admissible for any other players. Stabilization of rational, conservative upgrades

with admissibility is equivalent to establishing common assumption of admissibility.

Upgrade streams based on generalized conservative upgrade and admissibility, if they stabilize,

need not do so on the IA solution, nor on self-admissible sets (SAS) [13].

Observation 3.5 There are self-admissible sets that are not tightly admissible.

Proof. Consider the following game.

Ann

Bob

L R

u 2, 2 2, 2

m 3, 1 0, 0

d 0, 0 1, 3

{(u,R)} is an SAS, but is not a closed admissible set. qed

Observation 3.6 There are games where tightly admissible sets do not coincide with the IA

solution.

Proof. Consider the following game:

Ann

Bob

L M R

u 1, 0 0, 1 0, 0

m 1, 0 1, 1 1, 0

d 0, 0 1, 0 1, 1

(m,M) is the IA solution of that game, but {d,m} × {M,R} is a tight admissible set. qed

Finally, we note that for a given game there can be many tight admissible sets.

Observation 3.7 For a given game G there can be many tight admissible sets.
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Proof. Take the 8 × 8 matrix constituted of one copy of the game in Observation ?? in the

top-left quadrant, and another copy in the bottom-right quadrant. Both player get 0 on all the

other profiles, i.e. top-right and bottom-left quadrants. The tight admissible sets in each copies of

the game above are also tight admissible in this bigger game, and also the set of profiles formed by

the product of strategies in the union of these two closed admissible sets15. qed

3.2 Generalized Radical Upgrade with Admissibility

Generalized radical upgrade stabilizes plain beliefs, and as showed above this is sufficient to guar-

antee stabilization of rational responses, even for non-monotonic choice rules like admissibility.

The game on page 16 is an illuminating special case. Starting with the full model of this game,

the upgrade stream stabilizes on a model with common belief in admissibility. Again we only show

the figure, and leave the formal details to the reader.

u, L u,R

d, L d,R

M0

d, L d,R

u, L u,R

M1

⇑D0

d,R

u,R

u, L

d, L

M2

⇑D1

Intuitively, what happens is the following: Just like for conservative upgrade, M0 and M1, re-

spectively, give the agents reasons to believe that Ann will not play d, and that Bob will not play

R. This leads to M2 where, like before, d is admissible given that Ann believes that Bob plays L.

Radical update, however, doesn’t allow this fact to overwrite the reason she had not to play d: her

rational response is to rank u, L and d, L above all other possible outcomes, but to keep the relative

ordering of these two, reflecting the fact that she previously ruled out u.

Stabilization of radical upgrade puts Samuelson’s observation into perspective. Such upgrade

forces the agents to remember the reasons they had earlier in the deliberation. Previous reasons

constraint the domain of permissibility at later stages in the reasoning process. What is permissible

for Ann at M2 depends on the reasoning process that led to this model, and in particular on the

15Note that this is not the case in general.

19



existence of an (earlier) reason not to play d. This was not the case for conservative upgrade.

Reasons, at each stage, were evaluated de novo, without references to the preceding reasoning

history. This is what led the upgrade stream for Samuelson’s game into looping, to the “paradox”

of admissibility. We leave it open for discussion whether this constitutes an argument to the effect

that agents “should” keep track of their reasons while reasoning to a specific informational context.

For now we content ourselves with the observation that there is a tight connection, on the one hand,

between remembering one’s reasons and stabilization of reasoning under admissibility and, on the

other hand, between letting new reasons override previous ones and the possibility of never-ending

reasoning chains.

4 Concluding remarks

In this paper we proposed a general framework to analyze how “proper” or “rational” information

contexts my arise. We showed general conditions for stabilization of sequences of rational responses

to incoming information, in terms structural properties of both the decision rule and the information

update policy. In the course of doing so we generalized existing rules for information update used

in the dynamic-epistemic logic literature. We then applied this framework to admissibility, giving

a dynamic analysis of Samuelson’s non-existence result, as well as characterizing stabilization of

iterated rational response to admissibility under two different rules for information update.

Throughout the paper we worked with (logical) models of all out attitudes, leaving aside prob-

abilistic, graded beliefs, even though the later are arguably the most widely used in the current

literature on epistemic foundations of game theory. It is an important, but non-trivial task to trans-

pose the dynamic perspective on informational contexts that we advocate here to such probabilistic

models. We leave it for future work.

Finally, we should stress that the dynamic perspective on informational contexts is a natural

complement, and not an alternative to existing epistemic characterization of solution concepts [35].

The later offer rich insights on the consequences of taking seriously the informational contexts of

strategic interaction. What we proposed here is a first step towards understanding how or why

such context might arise.
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