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Part 2: Ingredients of a Logical Analysis of Rational
Agency

I Logics of Informational Attitudes and Informative Actions

I Logics of Motivational Attitudes (Preferences)

I Time, Action and Agency
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Basic Ingredients

I What are the basic building blocks? (the nature of time

(continuous or discrete/branching or linear), how (primitive) events

or actions are represented, how causal relationships are represented

and what constitutes a state of affairs.)

I Single agent vs. many agents.

I What the the primitive operators?

• Informational attitudes
• Motivational attitudes
• Normative attitudes

I Static vs. dynamic
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X informational attitudes (eg., knowledge, belief, certainty)

X group notions (eg., common knowledge and coalitional ability)

X time, actions and ability

X motivational attitudes (eg., preferences)

X normative attitudes (eg., obligations)
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Logics of Informational Attitudes and Informative Actions

See the courses:

1. Tutorial on Epistemic and Modal Logic by Hans van Ditmarsch

2. Dynamic Epistemic Logic by Hans van Ditmarsch

3. Multi-Agent Belief Dynamics by Alexandru Baltag and Sonja
Smets

Also,
EP. Logics of Informational Attitudes and Informative Actions. to appear, 2010
(available on the course website).

Rather than a general introduction, we present results not typically
discussed in introductions to epistemic logic:

1. Can we agree to disagree?

2. How many levels of knowledge are there?
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Agreeing to Disagree

Theorem: Suppose that n agents share a common prior and have
different private information. If there is common knowledge in the
group of the posterior probabilities, then the posteriors must be
equal.

Robert Aumann. Agreeing to Disagree. Annals of Statistics 4 (1976).
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G. Bonanno and K. Nehring. Agreeing to Disagree: A Survey. (manuscript)
1997.
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2 Scientists Perform an Experiment

w1 w2 w3 w4

w5 w6 w7

They agree the true state is one of seven different states.
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w1

2
32 w2

4
32 w3

8
32 w4

4
32

w5

5
32 w6

7
32 w7

2
32

They agree on a common prior.
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2 Scientists Perform an Experiment

w1 w2 w3 w4

w5 w6 w7

They agree that Experiment 1 would produce the blue partition.
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2 Scientists Perform an Experiment

w1 w2 w3 w4

w5 w6 w7

They agree that Experiment 1 would produce the blue partition
and Experiment 2 the red partition.
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2 Scientists Perform an Experiment

w1 w2 w3 w4

w5 w6 w7

They are interested in the truth of E = {w2,w3,w5,w6}.

Eric Pacuit



2 Scientists Perform an Experiment

w1

2
32 w2

4
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8
32 w4

4
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w5

5
32 w6

7
32 w7
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32

So, they agree that P(E ) = 24
32 .
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2 Scientists Perform an Experiment

w1

2
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4
32 w3

8
32 w4

4
32

w5

5
32 w6

7
32 w7

2
32

Also, that if the true state is w1, then Experiment 1 will yield
P(E |I ) = P(E∩I )

P(I ) = 12
14
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2 Scientists Perform an Experiment

w1

2
32 w2

4
32 w3

8
32 w4

4
32

w5

5
32 w6

7
32 w7

2
32

Suppose the true state is w7 and the agents preform the
experiments.
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Suppose the true state is w7, then Pr1(E ) = 12
14
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Then Pr1(E ) = 12
14 and Pr2(E ) = 15

21
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2 Scientists Perform an Experiment

w1

2
32 w2

4
32 w3

8
32 w4

4
32

w5

5
32 w6

7
32 w7

2
32

Suppose they exchange emails with the new subjective
probabilities: Pr1(E ) = 12

14 and Pr2(E ) = 15
21
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2 Scientists Perform an Experiment

w1

2
32 w2

4
32 w3

8
32 w4

4
32

w5

5
32 w6

7
32 w7

2
32

Agent 2 learns that w4 is NOT the true state (same for Agent 1).
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2 Scientists Perform an Experiment

w1
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4
32 w3

8
32 w4

4
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w5

5
32 w6

7
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Agent 1 learns that w5 is NOT the true state (same for Agent 1).
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2 Scientists Perform an Experiment

w1

2
32 w2

4
32 w3

8
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w5

5
32 w6

7
32 w7

2
32

The new probabilities are Pr1(E |I ′) = 7
9 and Pr2(E |I ′) = 15

17
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2 Scientists Perform an Experiment

w1

2
32 w2

4
32 w3

8
32

w5

5
32 w6

7
32 w7

2
32

After exchanging this information (Pr1(E |I ′) = 7
9 and

Pr2(E |I ′) = 15
17 ), Agent 2 learns that w3 is NOT the true state.
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2 Scientists Perform an Experiment

w1

2
32 w2

4
32

w5

5
32 w6

7
32 w7

2
32

No more revisions are possible and the agents agree on the
posterior probabilities.
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Formal Models of Knowledge

I KAKBE : “Ann knows that Bob knows E ”

I KA(KBE ∨ KB¬E ): “Ann knows that Bob knows whether E

I ¬KBKAKB(E ): “Bob does not know that Ann knows that
Bob knows that E ”
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Example
Suppose there are three cards:
1, 2 and 3.

Ann is dealt one of the cards,
one of the cards is placed face
down on the table and the third
card is put back in the deck.

Suppose that Ann receives card
1 and card 2 is on the table.

H1,T2

w1

H1,T3

w2

H2,T3

w3

H2,T1

w4

H3,T1

w5

H3,T2

w6
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Group Knowledge

KAP: “Ann knows that P”

KBP: “Bob knows that P”

KAKBP: “Ann knows that Bob knows that P”

KAP ∧ KBP: “Every one knows P”. let EP := KAP ∧ KBP

KAEP: “Ann knows that everyone knows that P”.

EEP: “Everyone knows that everyone knows that P”.

EEEP: “Everyone knows that everyone knows that everyone knows
that P.”

CP: “it is common knowledge that P”
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Three Views of Common Knowledge

1. γ := i knows that ϕ, j knows that ϕ, i knows that j knows
that ϕ, j knows that i knows that ϕ, i knows that j knows
that i knows that ϕ, . . .
D. Lewis. Convention, A Philosophical Study. 1969.

2. γ := i and j know that (ϕ and γ)
G. Harman. Review of Linguistic Behavior. Language (1977).

3. There is a shared situation s such that

• s entails ϕ
• s entails i knows ϕ
• s entails j knows ϕ

H. Clark and C. Marshall. Definite Reference and Mutual Knowledge. 1981.

J. Barwise. Three views of Common Knowledge. TARK (1987).
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Dissecting Aumann’s Theorem

I “No Trade” Theorems (Milgrom and Stokey); from
probabilities of events to aggregates (McKelvey and Page);
Common Prior Assumption, etc.

I How do the posteriors become common knowledge?

J. Geanakoplos and H. Polemarchakis. We Can’t Disagree Forever. Journal of
Economic Theory (1982).
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Geanakoplos and Polemarchakis

Revision Process: Given event A, 1: “My probability of A is q”,
2: “My probability of A is r , 1: “My probability of A is now q′, 2:
“My probability of A is now r ′, etc.

I Assuming that the information partitions are finite, given an
event A, the revision process converges in finitely many steps.

I For each n, there are examples where the process takes n
steps.

I An indirect communication equilibrium is not necessarily a
direct communication equilibrium.
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Parikh and Krasucki

Protocol: graph on the set of agents specifying the legal pairwise
communication (who can talk to who).

I If the protocol is fair, then the limiting probability of an event
A will be the same for all agents in the group.

I Consensus can be reached without common knowledge:
“everyone must know the common prices of commodities;
however, it does not make sense to demand that everyone
knows the details of every commercial transaction.”

Eric Pacuit
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Qualitative Generalizations

Assuming a version of Savage’s Sure-Thing Principle, their cannot
be common knowledge that two-like minded individuals make
different decisions.

Eric Pacuit



The Sure-Thing Principle

A businessman contemplates buying a certain piece of
property. He considers the outcome of the next
presidential election relevant.

So, to clarify the matter to
himself, he asks whether he would buy if he knew that
the Democratic candidate were going to win, and decides
that he would. Similarly, he considers whether he would
buy if he knew a Republican candidate were going to win,
and again he finds that he would. Seeing that he would
buy in either event, he decides that he should buy, even
though he does not know which event obtains, or will
obtain, as we would ordinarily say. (Savage, 1954)
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Dissecting Aumann’s Theorem

I Qualitative versions: like-minded individuals cannot agree to
make different decisions.

M. Bacharach. Some Extensions of a Claim of Aumann in an Axiomatic Model
of Knowledge. Journal of Economic Theory (1985).

J.A.K. Cave. Learning to Agree. Economic Letters (1983).

D. Samet. The Sure-Thing Principle and Independence of Irrelevant Knowledge.
2008.
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Analyzing Agreement Theorems in Dynamic
Epistemic/Doxastic Logic

C. Degremont and O. Roy. Agreement Theorems in Dynamic-Epistemic Logic.
in A. Heifetz (ed.), Proceedings of TARK XI, 2009, pp.91-98.

L. Demey. Agreeing to Disagree in Probabilistic Dynamic Epistemic Logic. ILLC,
Masters Thesis, forthcoming.
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Levels of Knowledge
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Levels of Knowledge

What are the states of knowledge created in a group when
communication takes place? What happens when communication
is not the the whole group, but pairwise?

R. Parikh and P. Krasucki. Communication, Consensus and Knowledge. Journal
of Economic Theory (1990).

Informal Definition: Given some fact P and a set of agents A, a
state of knowledge is a (consistent) description of the agents
first-order and higher-order information about P.

For example: {P,KAP,KBP,KBKAP}
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Levels of Knowledge

Informal Definition: Given some fact P and a set of agents A, a
state of knowledge is a (consistent) description of the agents
first-order and higher-order information about P.

For example: {P,KAP,KBP,KBKAP}

Also called level of knowledge, hierarchy of knowledge.

At one extreme, no one may have any information about P and
the other extreme is when there is common knowledge of P.

There are many interesting levels in between...
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Levels of Knowledge

Informal Definition: Given some fact P and a set of agents A, a
state of belief is a (consistent) description of the agents
first-order and higher-order information about P.

For example: {P,B iP,B jP,B jB iP}

Also called level of belief, hierarchy of belief.

At one extreme, no one may have any information about P and
the other extreme is when there is common belief of P.

There are many interesting levels in between...
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Some Questions/Issues

I How do states of knowledge influence decisions in game
situations?

I Can we realize any state of knowledge?

I What is a state in an epistemic model?

I Is an epistemic model common knowledge among the agents?

Eric Pacuit



States of Knowledge in Games

R. Parikh. Levels of knowledge, games and group action. Research in Economics
57, pp. 267 - 281 (2003).
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States of Knowledge in Games

G N

g (−100,−10) (1, 0)

n (0, 1) (0, 0)

KpC , ¬KmKpC
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States of Knowledge in Games

G N

g (−100,−10) (1, 0)

n (0, 1) (0, 0)
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Realizing States of Knowledge

What is the exact relationship between

1. types of communicatory
events (public broadcasts, private announcements, DEL events,
etc.), 2. the protocol (eg., synchronous, asynchronous,
communication graph) and 3. different levels of knowledge?

Classic example: general’s problem or the email problem show that
common knowledge cannot be realized in systems with only
asynchronous communication.
(cf. Halpern and Moses, Rubinstein)

What about other levels of knowledge?

R. Parikh and P. Krasucki. Levels of knowledge in distributed computing.
Sadhana-Proceedings of the Indian Academy of Science 17 (1992).
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What is a State?

Possible worlds, or states, are taken as primitive in Kripke
structures. But in many applications, we intuitively understand
what a state is:

Dynamic logic: a program state (assignment of values to variables)
Temporal logic: a moment in time
Distributed system: a sequence of local states for each process

What about in game situations?
Answer: a description of the first-order and higher-order
information of the players

R. Fagin, J. Halpern and M. Vardi. Model theoretic analysis of knowledge.
Journal of the ACM 91 (1991).
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Is an Epistemic Model “Common Knowledge”?

“The implicit assumption that the information partitions...are
themselves common knowledge...constitutes no loss of generality...
the assertion that each individual ‘knows’ the knowledge operators
of all individual has no real substance; it is part of the framework.”

R. Aumann. Interactive Epistemology I & II. International Journal of Game
Theory (1999).

“it is an informal but meaningful meta-assumption....It is not
trivial at all to assume it is “common knowledge” which partition
every player has.”

A. Heifetz. How canonical is the canonical model? A comment on Aumann’s
interactive epistemology. International Journal of Game Theory (1999).

Eric Pacuit
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A General Question

How many levels/states of knowledge (beliefs) are there?

It depends on how you count:

I Parikh and Krasucki: Countably many levels of knowledge

I Parikh and EP: Uncountably many levels of belief

I Hart, Heiftetz and Samet: Uncountably many states of
knowledge

Eric Pacuit
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Levels of Knowledge

Fix a set of agents A = {1, . . . , n}.

ΣK = {K1, . . . ,Kn} and ΣC = {CU}U⊆A

Level of Knowledge: LevM(p, s) = {x ∈ Σ∗ | M, s |= xp}
(where Σ = ΣK or Σ = ΣC ).

[If Σ is a finite set, then Σ∗ is the set of finite strings over Σ]
[Recall the definition of truth in a Kripke structure]

R. Parikh and P. Krasucki. Levels of knowledge in distributed computing.
Sadhana-Proceedings of the Indian Academy of Science 17 (1992).

R. Parikh. Levels of knowledge, games and group action. Research in Economics
57, pp. 267 - 281 (2003).
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Levels of Knowledge

A level of knowledge is simply a set of finite strings over ΣC .
Why isn’t it obvious that there are uncountably many levels of
knowledge?

Consider the sets:

I L1 = {K1,K2} and L2 = {K1,K2,K1K2}
(different level of knowledge)

I L1 = {K1,K3,K1K2K3} and L2 = {K1,K2,K3,K1K2K3}
(same level of knowledge)
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Levels of Knowledge: Preliminaries

Given any two strings x , y ∈ Σ∗, we say x is embeddable in y ,
written x ≤ y , if all symbols of x occur in y in the same order but
not necessarily consecutively.

Formally, we can define ≤ as follows:

1. x ≤ x and ε ≤ x for all x ∈ Σ∗

2. x ≤ y if there exists x ′, x ′′, y ′, y ′′, (y , y ′′ 6= ε) such that
x = x ′x ′′, y = y ′y ′′ and x ′ ≤ y ′, x ′′ ≤ y ′′.

≤ is the smallest relation satisfying (1) and (2).

Example:
aba ≤ aaba
aba ≤ abca
aba 6≤ aabb

Eric Pacuit
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Levels of Knowledge: Preliminaries

(X ,�) is

a partial order if � is reflexive, transitive and antisymmetric.

well founded if every infinite subset of X has a (� −)minimal
element.

a linear order if it is a partial order and all elements of X are
comparable.

a well-partial order (WPO) if (X ,�) is a partial order and every
linear order that extends (X ,�) (i.e., a linear order (X ,�′) with
�⊆�′) is well-founded.

A set {a1, a2, . . .} of incomparable elements is a well-founded
partial order but not a WPO.

Eric Pacuit
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Well-Partial Orders

Fact. (X ,�) is a WPO iff � is well-founded and every subset of
mutually incomparable elements is finite

Theorem (Higman). If Σ is finite, then (Σ∗,≤) is a WPO

G. Higman. Ordering by divisibility in abstract algebras. Proc. London Math.
Soc. 3 (1952).

D. de Jongh and R. Parikh. Well-Partial Orderings and Hierarchies. Proc. of
the Koninklijke Nederlandse Akademie van Wetenschappen 80 (1977).
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WPO and Downward Closed Sets

Given (X ,�) a set A ⊆ X is downward closed iff x ∈ A implies
for all y � x , y ∈ A.

Theorem. (Parikh & Krasucki) If Σ is finite, then there are only
countably many ≤-downward closed subsets of Σ∗ and all of them
are regular.

Eric Pacuit



Levels of Knowledge

Theorem. Consider the alphabet ΣC = {CU}U⊆A. For all strings
x , y ∈ Σ∗C , if x � y then for all pointed models M, s, if
M, s |= yP then M, s |= xP.

Incorrect as stated, but easily fixed: every extension of a WPO is a
WPO

1. K1K1 6≤ K1

2. We should have CU � CV if U ⊆ V .

Corollary 1. Every level of knowledge is a downward closed set.
Corollary 2. There are only countably many levels of knowledge.

Eric Pacuit
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Realizing Levels of Knowledge

Theorem. (R. Parikh and EP) Suppose that L is a downward
closed subset of Σ∗K , then there is a finite Kripke model M and
state s such that M, s |= xP iff x ∈ L. (i.e., L = LevM(p, s)).

Eric Pacuit



States of Knowledge

S. Hart, A. Heifetz and D. Samet. “Knowing Whether,”, “Knowing That,” and
The Cardinality of State Spaces. Journal of Economic Theory 70 (1996).
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States of Knowledge

Let W be a set of states and fix an event X ⊆W .

Consider a sequence of finite boolean algebras B0,B1,B2, . . .
defined as follows:
B0 = {∅,X ,¬X ,Ω}
Bn = Bn−1 ∪ {KiE | E ∈ Bn−1, i ∈ A}

The events B = ∪i=1,2,...Bi are said to be generated by X .

Eric Pacuit



States of Knowledge

Definition. Two states w ,w ′ are separated by X if there exists an
event E which is generated by X such that w ∈ E and w ′ ∈ ¬E .

Question: How many states can be in an information structure
(W ,Π1,Π2) such that an event X separates any two of them?

Eric Pacuit



States of Knowledge

Consider a K -list (E1,E2,E3, . . .) of events generated by X .

We can of course, write down infinitely many infinite K -lists
(uncountably many!).

Again, are they all consistent?

Consider (X ,K1X ,¬K2K1X ,¬K1¬K2K1X ,K2¬K1¬K2K1X )
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States of Knowledge

Consider a K -list (E1,E2,E3, . . .) of events generated by X .

We can of course, write down infinitely many infinite K -lists
(uncountably many!).

Again, are they all consistent?

(X ,K1X ,¬K2K1X ,¬K1¬K2K1X ,K2¬K1¬K2K1X ) is inconsistent.

Eric Pacuit



Knowing Whether

Let JiE := KiE ∨ Ki¬E .

Lemma. Every J-list is consistent.

Theorem. (Hart, Heifetz and Samet) There exists an information
structure (W ,Π1,Π2) and an event X ⊆W such that all the
states in W are separated by X and W has the cardinality of the
continuum.

S. hart, A. Heifetz and D. Samet. “Knowing Whether,”, “Knowing That,” and
The Cardinality of State Spaces. Journal of Economic Theory 70 (1996).
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What about beliefs?

In Aumann/Kripke structures belief operators are just like
knowledge operators except we replace the truth axiom/property
(Kϕ→ ϕ) with a consistency property (¬B⊥).

Theorem. (R. Parikh and EP) There are uncountably many levels
of belief.

Eric Pacuit
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Returning to the Motivating Questions

I How do states of knowledge influence decisions in game
situations?

I Can we realize any state of knowledge?
It depends...

I What is a state in an epistemic model?
It depends...

I Is an epistemic model common knowledge among the agents?
It depends...
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Ingredients of a Logical Analysis of Rational Agency

X Logics of Informational Attitudes and Informative Actions

I Logics of Motivational Attitudes (Preferences)

I Time, Action and Agency

Eric Pacuit



Preference (Modal) Logics

x , y objects

x � y : x is at least as good as y

1. x � y and y 6� x (x � y)

2. x 6� y and y � x (y � x)

3. x � y and y � x (x ∼ y)

4. x 6� y and y 6� x (x ⊥ y)

Properties: transitivity, connectedness, etc.

Eric Pacuit



Preference (Modal) Logics

x , y objects

x � y : x is at least as good as y

1. x � y and y 6� x (x � y)

2. x 6� y and y � x (y � x)

3. x � y and y � x (x ∼ y)

4. x 6� y and y 6� x (x ⊥ y)

Properties: transitivity, connectedness, etc.

Eric Pacuit



Preference (Modal) Logics

x , y objects

x � y : x is at least as good as y

1. x � y and y 6� x (x � y)

2. x 6� y and y � x (y � x)

3. x � y and y � x (x ∼ y)

4. x 6� y and y 6� x (x ⊥ y)

Properties: transitivity, connectedness, etc.

Eric Pacuit



Preference (Modal) Logics

Modal betterness model M = 〈W ,�,V 〉

Preference Modalities 〈�〉ϕ: “there is a world at least as good
(as the current world) satisfying ϕ”

M,w |= 〈�〉ϕ iff there is a v � w such that M, v |= ϕ

M,w |= 〈�〉ϕ iff there is v � w and w 6� v such that M, v |= ϕ

Eric Pacuit
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Preference (Modal) Logics

1. 〈�〉ϕ→ 〈�〉ϕ
2. 〈�〉〈�〉ϕ→ 〈�〉ϕ
3. ϕ ∧ 〈�〉ψ → (〈�〉ψ ∨ 〈�〉(ψ ∧ 〈�〉ϕ))

4. 〈�〉〈�〉ϕ→ 〈�〉ϕ

Theorem The above logic (with Necessitation and Modus Ponens)
is sound and complete with respect to the class of preference
models.

J. van Benthem, O. Roy and P. Girard. Everything else being equal: A modal
logic approach to ceteris paribus preferences. JPL, 2008.
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Preference Modalities

ϕ ≥ ψ: the state of affairs ϕ is at least as good as ψ
(ceteris paribus)

G. von Wright. The logic of preference. Edinburgh University Press (1963).

〈Γ〉≤ϕ: ϕ is true in “better” world, all things being equal.

J. van Benthem, O. Roy and P. Girard. Everything else being equal: A modal
logic approach to ceteris paribus preferences. JPL, 2008.
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All Things Being Equal...

b, u b, r

u r

With boots (b), I prefer my raincoat (r) over my umbrella (u)

Without boots (¬b), I also prefer my raincoat (r) over my
umbrella (u)

But I do prefer an umbrella and boots over a raincoat and no
boots

Eric Pacuit
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All Things Being Equal...

b, u b, r

u r

All things being equal, I prefer my raincoat over my umbrella

Without boots (¬b), I also prefer my raincoat (r) over my
umbrella (u)

But I do prefer an umbrella and boots over a raincoat and no
boots

Eric Pacuit



All Things Being Equal...

Let Γ be a set of (preference) formulas. Write w ≡Γ v if for all
ϕ ∈ Γ, w |= ϕ iff v |= ϕ.

1. M,w |= 〈Γ〉ϕ iff there is a v ∈W such that w ≡Γ v and
M, v |= ϕ.

2. M,w |= 〈Γ〉≤ϕ iff there is a v ∈W such that w(≡Γ ∩ ≤)v
and M, v |= ϕ.

3. M,w |= 〈Γ〉<ϕ iff there is a v ∈W such that w(≡Γ ∩ <)v
and M, v |= ϕ.

Key Principles:

〈Γ′〉ϕ→ 〈Γ〉ϕ if Γ ⊆ Γ′

±ϕ ∧ 〈Γ〉(α ∧ ±ϕ)→ 〈Γ ∪ {ϕ}〉α

Eric Pacuit
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To be continued....
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