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Chapter1
Introduction and Motivation

Generally speaking, there are two different ways to motivate the study of a logical frame-
work. The first is to identify an interesting class of mathematical structures and to argue
that some particular logical system is the best one with which to reason about these
structures (or to describe interesting aspects of these structures). The second is to motivate
interest in certain “patterns of reasoning” and to argue that some logical system naturally
represents these patterns. This chapter introduces neighborhood semantics and weak
systems of modal logic with both motivations in mind.

Before turning to questions of motivation, I introduce the basic concepts and defini-
tions used throughout this book. Section 1.1 introduces subset spaces. The core focus
of this book is on the basic modal language (Section 1.2), interpreted on neighborhood
models (Section 1.2.1). Section 1.2.3 digresses briefly to introduce a bi-modal logic for
reasoning about subset spaces. 1 The final two sections are devoted to motivating our
study. I start in Section 1.3 by briefly discussing a number of weak systems of modal
logic. Each of these logical systems is an example of a so-called non-normal modal logic
(see Section 2.3 for a definition of “non-normal modal logic”). However, I want to stress
that the main focus of this book is not non-normal modal logics per se, but, rather, neigh-
borhood semantics for modal logic. While the neighborhood models defined in Section
1.2.1 do provide a semantics for the modal languages discussed in Section 1.3, they are
not the best choice of semantics, given the intended interpretations of the modal operator.
Nonetheless, I argue in Section 1.4 that neighborhood models are an interesting class of
mathematical structures that can be fruitfully studied using modal logic. 2

1This section can be skipped on a first reading.
2Although this text is self-contained, readers that have not studied relational semantics for modal logic

should consult Appendix A for a brief introduction.
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Neighborhood Semantics for Modal Logic Chapter 1, Section 1.1

1.1 Subset Spaces

Sets paired with a distinguished collection of subsets are ubiquitous in many areas of
mathematics. They show up as topologies, ultrafilters, or hypergraphs (also called simple
games), to name three of the most usual suspects. For any non-empty set W, let ℘(W) be
the power set of W—i.e., the collection of all subsets of W. A tuple 〈W,U〉 where W , ∅
andU ⊆ ℘(W) is called a subset space. Typically, the collectionU ⊆ ℘(W) satisfies certain
algebraic properties. I list some salient properties below:

1. U is closed under intersections provided that for any collection of sets {Xi}i∈I such
that for each i ∈ I, Xi ∈ U, we have ∩i∈IXi ∈ U. If |I| = 2, then U is said to be
closed under binary intersections. If I is finite, then U is said to be closed under
finite intersections. More generally, for any cardinal κ,U is said to be closed under
κ-intersections (closed under less than or equal to κ intersections) provided that
for each collection of sets {Xi}i∈I fromU with |I| = κ (|I| ≤ κ), we have ∩i∈IXi ∈ U.

2. U is closed under unions provided that for any collection of sets {Xi}i∈I such that
for each i ∈ I, Xi ∈ U, we have that ∪i∈IXi ∈ U. The same comments as above about
binary and finite collections apply here, as well: In particular, for any cardinal κ,
U is said to be closed under less than or equal to κ-unions provided that for each
collection of sets {Xi}i∈I fromU with |I| ≤ κ, ∪i∈IXi ∈ U.

3. U is closed under complements provided that for each X ⊆ W, if X ∈ U, then
XC
∈ U, where XC = {w | w ∈W,w < X} is the complement of X (relative to W).

4. U is closed under supersets provided that for each X ⊆W, if X ∈ U and X ⊆ Y ⊆W,
then Y ∈ U. In this case,U is also said to be monotonic or supplemented.

5. U is a clutter if ∅ < U and there are no X,Y ∈ U such that X ⊂ Y (I write X ⊂ Y
when X is a strict subset of Y).

6. U contains the unit if W ∈ U; andU contains the empty set if ∅ ∈ U.

7. The set
⋂
U is called the core ofU; when

⋂
U ∈ U,U is said to contain its core.

8. U is proper if X ∈ U implies XC <U.

9. U is consistent if ∅ <U; andU is non-trivial ifU , ∅.

The remainder of this section contains a number of simple observations about subset
spaces that will be used throughout the text. I start with a discussion of monotonic subset
spaces since they will play an important role in this book.

Lemma 1.1 U is closed under supersets iff X ∩ Y ∈ U implies that X ∈ U and Y ∈ U.
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Neighborhood Semantics for Modal Logic Chapter 1, Section 1.1

Proof. The left to right direction is trivial, as X ∩ Y ⊆ X and X ∩ Y ⊆ Y. For the right to
left direction, suppose that for any X,Y ⊆ W, if X ∩ Y ∈ U, then X ∈ U and Y ∈ U. Let
Z ⊆ Z′ ⊆W and Z ∈ U. We must show Z′ ∈ U. Since Z ⊆ Z′, Z ∩ Z′ = Z, and so we have
Z ∩ Z′ = Z ∈ U. Hence, Z ∈ U and Z′ ∈ U, as desired. qed

Definition 1.2 (Non-Monotonic Core) Suppose thatU is a monotonic collection of sub-
sets of W. The non-monotonic core, denotedUnc, is a subset ofU defined as follows:

U
nc = {X | X ∈ U and for all X′ ⊆W, if X′ ⊂ X, then X′ <U}. /

The non-monotonic core of U is the set of minimal elements of U under the subset
relation. It is not hard to see that if U is a monotonic collection of finite sets, then
U

nc , ∅. However, in general, it is not true that every monotonic collection of sets has a
non-monotonic core, as the following example illustrates.

Example 1.3 Suppose that W = (−1, 1) = {x | x ∈ R and − 1 ≤ x ≤ 1} and U = {X ⊆
(−1, 1) | (− 1

n ,
1
n ) ⊆ X for some natural number n ≥ 1}. It is not hard to show that U is

monotonic (if X ∈ U, then there is a natural number n ≥ 1 such that (− 1
n ,

1
n ) ⊆ X; hence,

if X ⊆ X′, then (− 1
n ,

1
n ) ⊆ X′, and so X′ ∈ U). However, the non-monotonic core of U is

empty—i.e., Unc = ∅: Suppose that X ∈ U. I will show that there must be a set X′ ⊆ X
such that X′ ∈ U. Since X ∈ U, there is a natural number n such that (− 1

n ,
1
n ) ⊆ X. Let

X′ = (− 1
n+1 ,

1
n+1 ). Then, X′ ⊆ (− 1

n ,
1
n ) ⊆ X and X′ ∈ U. Thus, X < Unc. Since X is an

arbitrary element ofU, it must be the case thatUnc = ∅.

Suppose that U is a monotonic collection of finite sets. Then, Unc , ∅; and, in fact,
U

nc completely determines the elements ofU.

Definition 1.4 (Core Complete) A monotonic collection of setsU is core-complete pro-
vided that for all X ∈ U, there exists a Y ∈ Unc such that Y ⊆ X. /

If U is core-complete, then every element of U contains some element of the non-
monotonic core (so, in particular, ifU , ∅, thenUnc , ∅). Thus,Unc representsUwithout
any redundancies. Furthermore, note that if U is monotonic and only contains finitely
many sets, then it is core-complete.

Returning to the more general setting (in which the collections of sets need not neces-
sarily be monotonic), the following definition lists some well-known subset spaces that
will be discussed in this book.

Definition 1.5 Let W be a non-empty set andU ⊆ ℘(W). Then:

1. U is a filter if U contains the unit, and is closed under binary intersections and
closed under supersets. U is a proper filter if, in addition, U does not contain the
emptyset.

3
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2. U is an ultrafilter ifU is a proper filter and for each X ⊆W, either X ∈ U or XC
∈ U.

3. U is a topology if U contains the unit, the emptyset, and is closed under finite
intersections and arbitrary unions.

4. U is augmented ifU contains its core and is closed under supersets. /

Now, I consider augmented collections in a bit more detail. The proof of the following
fact is left as an exercise.

Exercise 1 Prove the following:

If U is augmented, then U is closed under arbitrary intersections. In fact, if U is augmented,
thenU is a filter.

Of course, the converse of the last statement in the above exercise is false. But that is not
very interesting since it is easy to construct collections of sets closed under intersections
but not closed under supersets. A much more interesting fact is that there are consistent
filters that are not augmented.

Fact 1.6 There are consistent filters that are not augmented.

Proof. The collection of sets from Example 1.3 is an example of a consistent filter that
is not augmented: Recall that W = (−1, 1) = {x | x ∈ R and − 1 ≤ x ≤ 1}, and U =
{X ⊆ (−1, 1) | (− 1

n ,
1
n ) ⊆ X for some natural number n ≥ 1}. Clearly, ∅ < U (and U is

non-empty), soU is consistent. We have seen thatU is closed under supersets. Finally,
U is easily seen to be closed under finite intersections: let X1,X2 ∈ U. Then, there is an
n ≥ 1 and m ≥ 1 such that (− 1

n ,
1
n ) ⊆ X1 and (− 1

m ,
1
m ) ⊆ X2. Either n ≤ m or m > n. If n = m,

we are done since in this case, (− 1
n ,

1
n ) = (− 1

m ,
1
m ) ⊆ X1 ∩ X2 and so X1 ∩ X2 ∈ U. This

leaves the cases n > m and m > n. Suppose that n > m. Then (− 1
n ,

1
n ) ⊆ (− 1

m ,
1
m ). Hence,

(− 1
n ,

1
n ) ⊆ X1 ∩ X2 and so X1 ∩ X2 ∈ U. The case in which m > n is similar. So U is a

consistent filter.
Now, ∩U = ∅ and, as noted above, ∅ < U; therefore, U is not augmented. To see

that ∩U = ∅, note that for each x ∈ (−1, 1), there is a large enough n such that x < (− 1
n ,

1
n )

(this is a standard fact about real numbers). This shows that ∩n≥1(− 1
n ,

1
n ) = ∅. Thus, since

∩U ⊆ ∩n≥1(− 1
n ,

1
n ), we have ∩U = ∅. qed

Note that it is crucial that the set W is infinite in the above example. In fact, as is
well known, the situation is much better when W is finite. This is demonstrated by the
following Lemma and Corollary (the proofs are left to the reader).

Exercise 2 Prove the following Lemma and Corollary:

Lemma 1.7 IfU is closed under binary intersections (i.e., if X,Y ∈ U, then X ∩ Y ∈ U), then
U is closed under finite intersections.
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Corollary 1.8 If W is finite andU is a filter over W, thenU is augmented.

I conclude this section with some additional notation. Suppose that W is a non-empty
set andU ⊆ ℘(W) any collection of sets.

• Let Umon be the smallest collection of subsets of W that contains U and is closed
under supersets.

• LetUaug be the smallest augmented collection of sets containingU. That is,Uaug =
(U ∪ {∩U})mon.

1.2 Language and Semantics

Definition 1.9 (The Basic Modal Language) Suppose that At = {p, q, r, . . .} is a (finite or
countable) set of sentence letters, or atomic propositions. The set of well-formed formu-
las generated from At, denoted L(At), is the smallest set of formulas generated by the
following grammar:

p | ¬ϕ | (ϕ ∧ ψ) | �ϕ | ^ϕ

where p ∈ At. /

Additional propositional connectives (e.g., ∨,→,↔) are defined as usual. It will be con-
venient to introduce special formulas ‘>’ and ‘⊥’, meaning ‘true’ and ‘false’, respectively.
Typically, ⊥ is defined to be p ∧ ¬p (where p ∈ At) and > is ¬⊥. If the set of atomic
propositions is empty, then add ⊥ and > to the language. Examples of modal formulas
include: 3 �⊥, �^>, p → �(q ∧ r), and �(p → (q ∨ ^r)). To simplify the notation, I write
L for L(At) when the set of atomic propositions At is understood.

Remark 1.10 (Modal Operators) According to Definition 1.9,L contains two unary modal
operators. In this text, I will discuss languages that contain more than two unary modal-
ities and languages that contain modalities of other arities (e.g., the binary modality in
Section 1.4.3). Furthermore, it is often convenient to define ^ϕ as ¬�¬ϕ (cf. Lemma 2.33).

One language, many readings. There are many possible readings for the modal operators
‘�’ and ‘^’. Here are some samples:

• Alethic Reading: �ϕ means ‘ϕ is necessary’ and ^ϕ means ‘ϕ is possible’.

• Deontic Reading: �ϕ means ‘ϕ is obligatory’ and ^ϕ means ‘ϕ is permitted’. In
this literature, ‘O’ typically is used instead of ‘�’ and ‘P’ instead of ‘^’.

• Epistemic Reading: �ϕmeans ‘ϕ is known’ and^ϕmeans ‘ϕ is consistent with the
knower’s current information’. In this literature, ‘K’ typically is used instead of ‘�’
and ‘L’ instead of ‘^’.

3To simplify the presentation, I will typically drop the outermost parentheses.

5



Neighborhood Semantics for Modal Logic Chapter 1, Section 1.2

• Temporal Reading: �ϕmeans ‘ϕwill always be true’ and^ϕmeans ‘ϕwill be true
at some point in the future’. In this literature, ‘G’ typically is used instead of ‘� and
‘F’ instead of ‘^’.

I conclude this brief introduction to the basic modal language with the standard definition
of a substitution between formulas.

Definition 1.11 (Substitution) A substitution σ is a function from atomic propositions
to well-formed formulas: σ : At→ L(At). A substitution σ is extended to a function on all
formulas, denoted σ : L(At)→ L(At), by recursion on the structure of the formulas:

1. σ(p) = σ(p)

2. σ(ϕ ∧ ψ) = σ(ϕ) ∧ σ(ψ)

3. σ(�ϕ) = �σ(ϕ)

4. σ(^ϕ) = ^σ(ϕ)

For simplicity, I will often identify σ and σ and write ϕσ for σ(ϕ). /

For example, if σ(p) = �^(p ∧ q) and σ(q) = p ∧ �q, then

(�(p ∧ q)→ �p)σ = �((�^(p ∧ q)) ∧ (p ∧ �q))→ �(�^(p ∧ q)).

Exercise 3

1. Suppose that σ(p) = �q and σ(q) = (p→ �q). Find (�(p→ q)→ (�p→ �q))σ.

2. Suppose that σ(p) = ¬p. Find (�p↔ ¬^¬p)σ.

3. Show that ϕσ = ϕ iff σ(p) = p for all atomic propositions p occurring in ϕ.

4. Suppose that ((ϕ)σ)σ = ϕ, but (ϕ)σ , ϕ. Show that ϕ is an atomic proposition.

1.2.1 Neighborhood Frames and Models

The definition of a neighborhood model is very simple: Each state from W is associated
with a subset space over W.

Definition 1.12 (Neighborhood Frame) Let W be a non-empty set. A function N : W →
℘(℘(W)) is called a neighborhood function. A pair 〈W,N〉 is a called a neighborhood
frame if W is a non-empty set and N is a neighborhood function. /

Remark 1.13 (Neighborhood Relation) It is sometimes convenient to treat a neighbor-
hood function N : W → ℘(℘(W)) as a relation. More precisely, every neighborhood
function N corresponds to a relation RN ⊆ W × ℘(W) such that for any w ∈ W, X ∈ ℘(W),
w RN X iff X ∈ N(w).

6
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A neighborhood frame 〈W,N〉 is said to be a filter provided that for each w ∈W, N(w)
is a filter. It is similar for the other properties discussed in Section 1.1. Admittedly, this
is an abuse of notation since a filter is a property of collections of sets rather than of a
neighborhood function. However, I trust that this will not cause any confusion.

Definition 1.14 (Neighborhood Model) Suppose that F = 〈W,N〉 is a neighborhood
frame. A model based on F is a tuple 〈W,N,V〉, where V : At → ℘(W) is a valuation
function (a function assigning a set of states to each atomic proposition). /

The definition of truth for modal formulas fromL on neighborhood models is defined
in much the same way as it is for relational structures (cf. Definition A.3).

Definition 1.15 (Truth) Suppose that M = 〈W,N,V〉 is a neighborhood model and that
w ∈W. Truth of formulas ϕ ∈ L(At) at w is defined by recursion on the structure of ϕ:

1. M,w |= p iff w ∈ V(p) (p ∈ At).

2. M,w |= ¬ϕ iffM,w 6|= ϕ.

3. M,w |= (ϕ ∧ ψ) iffM,w |= ϕ andM,w |= ψ.

4. M,w |= �ϕ iff [[ϕ]]M ∈ N(w).

5. M,w |= ^ϕ iff W − [[ϕ]]M < N(w).

where [[ϕ]]M is the truth set of ϕ. That is, [[ϕ]]M = {w | M,w |= ϕ}. A set of formulas Γ ⊆ L
is satisfiable if there is some modelM = 〈W,N,V〉 and world w ∈ W such thatM,w |= ϕ
for all ϕ ∈ Γ. A formula ϕ ∈ L is satisfiable when {ϕ} is satisfiable. /

Definition 1.16 (Validity) Suppose that M = 〈W,N,V〉 is a neighborhood model. A
formula ϕ ∈ L is valid onM, denotedM |= ϕ, whenM,w |= ϕ for all w ∈ W. Suppose
that F = 〈W,N〉 is a neighborhood frame. For each w ∈ W, a formula ϕ is valid at w
in F , denoted F ,w |= ϕ, provided that M,w |= ϕ for all models M based on F (i.e.,
M = 〈F ,V〉). A formula ϕ ∈ L is valid on F , denoted F |= ϕ, provided that F ,w |= ϕ for
all w ∈ W. Suppose that C is a class of frames. A formula ϕ ∈ L is valid on C, denoted
|=C ϕ, provided that F |= ϕ for all F ∈ C. /

The definition of truth for the modal operators (items 4 and 5 in Definition 1.15) was
chosen to ensure that � and ^ are duals (cf. Lemma 2.33). The basic idea is that the
neighborhood function N lists, for each state, the propositions considered “necessary.”
Then, �ϕ is true at a state when the truth set of ϕ is a member of that list at the state.
Furthermore, ϕ is “possible” if the proposition expressed by ¬ϕ is not a member of the
list at the state. Other options for the definition of truth of the modal operators have been
considered in the literature. I will consider some of these below. Let us start by getting a
feel for the above definition of truth.

7
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We first need some notation. Each neighborhood function N : W → ℘(℘(W)) is
associated with a function mN : ℘(W)→ ℘(W) as follows: for X ⊆W,

mN(X) = {w | X ∈ N(w)}.

Intuitively, mN(X) is the set of states in which X is necessary. Let M = 〈W,N,V〉 be a
neighborhood model. Then,

• [[p]]M = V(p) for p ∈ At.

• [[¬ϕ]]M = W − [[ϕ]]M.

• [[(ϕ ∧ ψ)]]M = [[ϕ]]M ∩ [[ψ]]M.

• [[�ϕ]]M = mN([[ϕ]]M).

• [[^ϕ]]M = W −mN(W − [[ϕ]]M).

It is an easy application of the definition of truth to verify the above equations. I leave
this proof as an exercise for the reader. The following example illustrates the definitions
of models and truth of modal formulas:

Example 1.17 (Detailed Example of a Neighborhood Model) Suppose that W = {w, s, v},
and define a neighborhood function N : W → ℘(℘(W)) as follows:

• N(w) = {{s}, {v}, {w, v}}.

• N(s) = {{w, v}, {w, s}, {w}}.

• N(v) = {{w}, {s, v}, ∅}.

Define a valuation function V : {p, q} → ℘(W) by V(p) = {w, s} and V(q) = {s, v}. Then,
M = 〈W,N,V〉 is a neighborhood model. This model can be depicted as follows:

w s v

{s} {v} {w, v} {w, s} {w} {s, v} ∅

We can now calculate the truth (using Definition 1.15) for various modal formulas.

1. Since [[p]]M = V(p) = {w, s} ∈ N(s), we haveM, s |= �p.

2. Since [[¬p]]M = {v} < N(s), we haveM, s |= ^p.

8
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3. Since [[^p]]M = {s, v} ∈ N(v), we haveM, v |= �^p.

4. Since [[�p]]M = {s} ∈ N(w), we haveM,w |= ��p.

5. Since [[��p]]M = {w} ∈ N(s) ∩N(v), we haveM, s |= ���p andM, v |= ���p.

6. Since [[���p]]M = {w, v} ∈ N(w)∩N(s), we haveM,w |= ����p andM, s |= ����p.

7. Finally, since [[⊥]]M = ∅ ∈ N(v), we haveM, v |= �⊥.

Note thatM,w |= �(p ∧ q), butM,w 6|= �p. This is the first difference between neighbor-
hood models and relational models: If we fix the valuations of p and q as in the above
example, it is not possible to define a relational structure such that �(p∧ q) is true at w but
�p is false at w. Let us see why. (Consult Appendix A for an introduction to relational
semantics for modal logic.) Assuming that �p is false at w forces w to have an accessible
world in which p is false. But, according to the above valuation, there is only one such
world in which p is false—namely, v. However, if v is accessible from w, then �(p∧ q) will
no longer be true at w (since, if p is false at v, then so is p ∧ q).

Exercise 4 1. Consider the neighborhood modelM = 〈W,N,V〉where W = {w, v, x}; N(w) =
{{w, v}, {v, x}}, N(v) = ∅, and N(x) = {{w, v}, {v, x}, {v}}; and V(p) = {w, v} and V(q) =
{v, x}. Find the truth sets of the following modal formulas: �p, �q, �(p ∧ q), �p ∧ �q, and
^p.

2. For each of the following formulas, find a neighborhood models that falsifies the formula (i.e.,
find a model that contains a state in which the formula is false): �p→ ^p, ^p→ ^(p∨ q),
and �>

3. Prove that �(p ∧ q) → �p is valid on a neighborhood frame iff ^p → ^(p ∨ q) is valid on
the frame.

Exercise 5 Suppose that M = 〈W,N,V〉 and M′ = 〈W,N,V′〉 are two neighborhood models
based on the same neighborhood frame 〈W,N〉. Suppose that p1, p2, . . . , pk are the atomic propo-
sitions in ϕ and ψ1, . . . , ψk are formulas such that for all i = 1, . . . , k, V(pi) = [[ψi]]M′ . If σ is a
substitution such that σ(pi) = ψi, then [[ψ]]M = [[ψσ]]M′ .

1.2.2 Additional Modal Operators

Alternative definitions of truth for the basic modal operators can be found in the literature.
In particular, David Lewis (1973) introduced a variety of modal operators interpreted on
neighborhood models (including the ones defined below) in his seminal book Counterfac-
tuals (see Section 1.4.3 for a discussion). In order to compare these different definitions,
I extend the basic modal language with the following modalities: [ 〉, 〈 ], 〈 〉, and [ ]. Let
M = 〈W,N,V〉 be a neighborhood structure. Truth at a state w ∈W for these modalities is
given below.

9
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• M,w |= 〈 ]ϕ iff there is an X ∈ N(w) such that for all v ∈ X,M, v |= ϕ.

• M,w |= [ 〉ϕ iff for all X ∈ N(w), there is a v ∈ X such thatM, v |= ϕ.

• M,w |= 〈 〉ϕ iff there is an X ∈ N(w) such that there is a v ∈ X, such thatM, v |= ϕ.

• M,w |= [ ]ϕ iff for all X ∈ N(w), for all v ∈ X,M, v |= ϕ.

The first observation is that there really are only two modalities.

Observation 1.18 The following formulas are valid on all neighborhood models.

• 〈 ]ϕ↔ ¬[ 〉¬ϕ.

• [ ]ϕ↔ ¬〈 〉¬ϕ.

Exercise 6 Prove the above observation.

The modalities 〈 ] and [ 〉 will play an important role throughout this book. Let Lmon(At)
be the modal language generated by the following grammar:

p | ¬ϕ | (ϕ ∧ ψ) | 〈 ]ϕ | [ 〉ϕ

where p ∈ At.

Lemma 1.19 LetM = 〈W,N,V〉 be a neighborhood model. Then, for each w ∈W,

1. ifM,w |= �ϕ thenM,w |= 〈 ]ϕ; and

2. ifM,w |= [ 〉ϕ thenM,w |= ^ϕ.

Proof. LetM = 〈W,N,V〉 be a neighborhood model and w ∈W. Suppose thatM,w |= �ϕ.
Then [[ϕ]]M ∈ N(w). Then, clearly, there is an X ∈ N(w) such that for each v ∈ X,M, v |= ϕ
(let X = [[ϕ]]M). The proof of the second statement is analogous, and so will be left to the
reader. qed

The converses of both statements in the above Lemma are false. For instance, note that
in Example 1.17,M,w |= 〈 ]p (this follows since {s} ∈ N(w) and {s} ⊆ [[p]]M = {w, s}). Thus,
〈 ]ϕ → �ϕ is not valid on neighborhood models. This shows that the two definitions
for a modal operator are not, in general, equivalent. However, they are equivalent when
restricting attention to monotonic neighborhood frames (you are asked to prove this in
Exercise 7). As we will see in Chapter 2, there are theoretical reasons to prefer working
in languages with 〈 ]-modalities (cf. Areces and Figueira, 2009).

Exercise 7 1. Prove that if ϕ→ ψ is valid, then so is 〈 ]ϕ→ 〈 ]ψ.

2. Suppose that F = 〈W,N〉 is a neighborhood frame. Prove that �ϕ↔ 〈 ]ϕ is valid on F iff
F is monotonic.

3. Are there analogous results for the 〈 〉 modality?

10
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1.2.3 Reasoning About Subset Spaces

Larry Moss and Rohit Parikh devised a simple modal language with two modalities (K
and ^) for reasoning about subset spaces (Moss and Parikh, 1992). Moss and Parikh had
an epistemic interpretation in mind. The idea is that, given a subset space 〈W,O〉, the set
O represents the set of all observations about the states W available to an agent. Formulas
of their language are interpreted at pairs (w,U), where w is a state and U is set with w ∈ U
representing the agent’s current observation. Thus, it is assumed that all observations
are reliable, in the sense that the actual world is always an element of the agent’s current
observation. The intended interpretation of Kϕ is that “ϕ is known, given the agent’s
current observation”, and the intended interpretation of ^ϕ is that “after some effort
(such as an additional measurement), ϕ becomes true”. For example, the formula

ϕ→ ^Kϕ

means that if ϕ is true, then after some “effort”, Kϕ becomes true. In other words, the
formula says that if ϕ is true, then ϕ can be known with some effort. What exactly is
meant by “effort” depends on the application. I will now give the formal definitions of
the syntax and semantics from (Moss and Parikh, 1992).

Definition 1.20 (Subset Space Modal Language) Suppose that At is a finite or countable
set of atomic propositions. Let LK^(At) be the smallest set of formulas generated by the
following grammar:

p | ¬ϕ | (ϕ ∧ ψ) | Kϕ | ^ϕ

where p ∈ At. The other Boolean connectives are defined as usual. In addition, the duals
of the modal operators are defined as follows: Lϕ is ¬K¬ϕ and �ϕ is ¬^¬ϕ. /

Definition 1.21 (Subset Space Model) A subset space model is a tuple 〈W,O,V〉, where
W is a non-empty set, O ⊆ ℘(W) and V : At → ℘(W) is a valuation function. Let
W ×̇ O = {(w,U) | w ∈W, U ∈ O, and w ∈ U}, elements of which are called neighborhood
situations. /

Definition 1.22 (Truth in a Subset Space Model) Let M = 〈W,O,V〉 be a subset space
model and (w,U) ∈ W ×̇ O a neighborhood situation. Truth of formulas ϕ ∈ LK^(At) at
(w,U) is defined by induction on the structure of ϕ.

1. M,w,U |= p iff w ∈ V(p) where p ∈ At.

2. M,w,U |= ¬ϕ iffM,w,U 6|= ϕ.

3. M,w,U |= ϕ ∧ ψ iffM,w,U |= ϕ andM,w,U |= ψ.

4. M,w,U |= Kϕ iff for all v ∈ U,M, v,U |= ϕ.

5. M,w,U |= ^ϕ iff there exists (w,V) ∈W ×̇ O such that V ⊆ U andM,w,V |= ϕ.

11
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The usual logical notions of validity and satisfiability are defined in the standard way. /

Note that the interpretation of the atomic formulas at a neighborhood situation (w,U)
does not depend on the second component U. This means that, in any subset space
model, if ϕ does not contain any modalities, then ϕ ↔ �ϕ is valid. Thus, effort will not
change the ground facts about the world—it can only change knowledge of these facts. I
conclude by highlighting some of the properties of subset spaces that can be expressed in
the above bi-modal language.

Observation 1.23 The axiom scheme K�ϕ→ �Kϕ is valid on any subset space model.

Proof. Suppose thatM = 〈W,O,V〉 is a subset space model and (w,U) is a neighborhood
situation withM,w,U |= K�ϕ. Then, for all v ∈ U, M, v,U |= �ϕ. This means that for
all v ∈ U and all V ∈ O, if v ∈ V ⊆ U, then M, v,V |= ϕ. Let (w,U′) ∈ W ×̇ O be any
neighborhood situation in which U′ ⊆ U. We must show thatM,w,U′ |= Kϕ. Let y ∈ U′

be any state in U′. Since y ∈ U′ ⊆ U, by the assumption, M, y,U |= �ϕ. This means
that, since y ∈ U′ ⊆ U,M, y,U′ |= ϕ. Hence,M,w,U′ |= Kϕ, andM,w,U |= �Kϕ. Thus,
K�ϕ→ �Kϕ is valid. qed

It is not difficult to see that the K modality validates the so-called S5 axioms K(ϕ →
ψ) → (Kϕ → Kψ), Kϕ → ϕ, Kϕ → KKϕ and ¬Kϕ → K¬Kϕ; and that the � modality
validates the so-called S4 axioms �(ϕ→ ψ)→ (�ϕ→ �ψ), �ϕ→ ϕ, and �ϕ→ ��ϕ (cf.
Section A.3). Moss and Parikh (1992) proved that these axioms, together with the axiom
scheme from Observation 1.23 (K�ϕ→ �Kϕ) and rules of necessitation for each modality,
completely axiomatize the class of all subset space models. Additional properties of subset
spaces can be expressed in the language.

Observation 1.24 The axiom scheme �^ϕ → ^�ϕ is valid on any subset space that is closed
under arbitrary intersections.

Proof. Let M = 〈W,O,V〉 be a subset space in which O is closed under arbitrary in-
tersections. Suppose that M,w,U |= �^ϕ. Then, for all w,V ∈ W ×̇ O, if V ⊆ U, then
M,w,V |= ^ϕ. We must show thatM,w,U |= ^�ϕ. LetUw = {U | U ∈ O and w ∈ U} be
the set of elements of O that contain w. Since O is closed under arbitrary intersections,
we have

⋂
Uw ∈ O. Note that

⋂
Uw does not have any proper subsets in O. Thus, since

M,w,
⋂
Uw |= ϕ orM,w,

⋂
Uw |= ¬ϕ, we haveM,w,

⋂
Uw |= �ϕ∨�¬ϕ. By the assump-

tion, since w ∈
⋂
Uw ⊆ U, we haveM,w,

⋂
Uw |= ^ϕ. SinceM,w,

⋂
Uw |= �ϕ ∨ �¬ϕ

andM,w,
⋂
Uw |= ^ϕ, it must be the case thatM,w,

⋂
Uw |= ϕ (this follows since

⋂
Uw

is a subset of itself). Thus, since there are no proper subsets of
⋂
Uw in O, we have

M,w,
⋂
Uw |= �ϕ. This means thatM,w,U |= ^�ϕ, as desired. Hence, �^ϕ → ^�ϕ is

valid when the collection of subsets are closed under arbitrary intersections. qed

Interestingly, it can be shown that an infinite number of axiom schemes are needed for
a complete axiomatization of subset spaces that are closed under arbitrary intersections
(Weiss and Parikh, 2002).
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Exercise 8 1. Prove that (^ϕ∧L^ψ)→ ^[^ϕ∧L^ψ∧K^L(ϕ∨ψ)] is valid on any subset
space that is closed under binary unions.

2. Say that a subset space is directed provided that for all w ∈W and U,V ∈ Owith w ∈ U∩V,
there is a X ∈ O such that w ∈ X ⊆ U ∩ V. Prove that ^�ϕ→ �^ϕ is valid on all subset
spaces that are directed.

A number of papers have focused on finding axiomatizations of different classes of subsets
spaces and increasing the expressive power of the subset space language LK^. See Geor-
gatos (1993) for a sound and complete axiomatization of subset spaces that are topologies
and Georgatos (1994) for a sound and complete axiomatization for subsets spaces that are
complete lattices. The basic subset logic framework introduced in this section has been
extended to include temporal operators (Heinemann, 1999, 2000) and hybrid modalities
(Heinemann, 2004). In addition, there are subset space logics with public announcement
operators and many agents (Wáng and Agotnes, 2013; van Ditmarsch et al., 2015; Bjorn-
dahl, 2016). Consult Moss et al. (2007) for further discussion of logics for reasoning about
subset spaces.

1.3 Why Non-Normal Modal Logic?

To motivate the study of weak systems of modal logics, consider the following set of
formulas and rules of inference. Each of them is valid on all relational models (see
Appendix A for a discussion):

(Dual) �ϕ↔ ¬^¬ϕ

(RE) From ϕ↔ ψ, infer �ϕ↔ �ψ
(RM) From ϕ→ ψ, infer �ϕ→ �ψ
(C) (�ϕ ∧ �ψ)→ �(ϕ ∧ ψ)
(K) �(ϕ→ ψ)→ (�ϕ→ �ψ)
(Nec) From ϕ, infer �ϕ

For many interpretations, these formulas and rules are relatively uncontroversial. How-
ever, in some interpretations of the basic modal language, the validity of one or more
of the above formulas and rules of inference can be questioned. Such modal systems
are called non-normal modal logics. (I will define normal and non-normal modal logics in
Section 2.3.) I want to stress that the examples discussed in this section are not intended
to motivate the use of neighborhood structures as a semantics for these weak systems of
modal logic. Indeed, the most convincing analyses of many of the examples discussed
below do not use neighborhood structures.

13
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Logical Omniscience Epistemic logicians interpret �ϕ as “the agent knows that ϕ is
true” (see Fagin et al. (1995) and Pacuit (2013a) for discussions and references to the rele-
vant literature). Under this interpretation, the above principles each express a significant
assumption about the reasoning abilities of the agent under consideration.

Closure under logical implication (RM): Suppose that ϕ → ψ is valid. Then, if the
agent knows that ϕ, then the agent knows that ψ. This means that the agent knows
all the logical consequences of her knowledge.

Closure under known implication (K): If the agent knows thatϕ impliesψ and the agent
knows that ϕ, then the agent knows that ψ. Note the difference from the inference
rule (RM). The axiom K means that the set of formulas that the agent knows is
deductively closed (i.e., ifϕ andϕ→ ψ is in the set of formulas known by the agent,
then so is ψ). This is weaker than what is imposed under the inference rule (RM):
If ϕ is a formula known by the agent and ϕ→ ψ is valid (but not necessarily in the
set of formulas known by the agent), then ψ is also known by the agent.

Closure under logical equivalence (RE): If ϕ and ψ are logically equivalent (so express
the same proposition4), then the agent knows that ϕ if, and only if, the agent knows
thatψ. This means that the agent cannot distinguish between two different formulas
that are logically equivalent.

Knowledge of logical validities (Nec): If ϕ is valid, then the agent knows that ϕ. So,
the agent knows anything that can be deduced using the given modal system. In
particular, this means that the agent knows all propositional tautologies.

Closure under conjunction (C): If the agent knows that ϕ and the agent knows that ψ,
then the agent knows that ϕ ∧ ψ. That is, the set of formulas that the agent knows
is closed under conjunction. This is also called agglomeration.

Each of the above principles identifies different ways in which the agents studied by
epistemic logicians are idealized reasoners. There are two main reasons why one may want
to drop one or more of the above assumptions about the agents’ reasoning abilities. The
first reason is that the agents under consideration may not, in fact, be perfect reasoners.
For instance, humans typically do not recognize all the logical consequences of what they
currently know. 5 How, exactly, to reason about agents that are not perfect reasoners is
known as the logical omniscience problem. This is a difficult problem that is not easily solved
by simply restricting what the agents know at each possible world using neighborhood
models (see, Halpern and Pucella, 2011, for an overview of the different approaches to the
logical omniscience problem). Even if it is assumed that the agents are perfect reasoners,

4Here, I understand a proposition as a set of possible worlds. Alternatively (using standard terminology
from probability theory), I will say that ϕ and ψ express the same event.

5Indeed, Gilbert Harman famously argued that a rational thinker should not make all possible deductions
because they “clutter the mind” with useless facts (Harman, 1986).
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epistemologists have identified arguments that purport to show that knowledge may not
satisfy all of the above principles. See Holliday (2014, 2012) for an illuminating discussion
of this second reason to drop one or more of the above principles and an overview of the
various philosophical positions.

Logics of Knowledge and Belief Logics of knowledge and belief include modalities for
knowledge ([K]) and belief ([B]). The duals are denoted 〈K〉ϕ and 〈B〉ϕ and are defined
as ¬[K]¬ϕ and ¬[B]¬ϕ, respectively. In an influential paper, Robert Stalnaker (2006)
proposed the following axioms for a logic of knowledge and belief. The first group of
axioms defines [K] as an S4-modality (cf. Section A.3):

(K) [K](ϕ→ ψ)→ ([K]ϕ→ [K]ψ)
(T) [K]ϕ→ ϕ

(4) [K]ϕ→ [K][K]ϕ
(Nec) From ϕ infer [K]ϕ

The second group of axioms characterize the relationship between knowledge and beliefs:

(PI) [B]ϕ→ [K][B]ϕ
(NI) ¬[B]ϕ→ [K]¬[B]ϕ
(KB) [K]ϕ→ [B]ϕ
(D) [B]ϕ→ 〈B〉ϕ

(SB) [B]ϕ→ [B][K]ϕ

The axioms (PI) and (NI) ensure that the agent’s beliefs are perfectly introspective: If
the agent believes that ϕ, then she knows that she believes that ϕ, and if the agent does
not believe that ϕ, then she knows that she does not believe that ϕ. The (KB) axiom is the
natural idea that knowing something implies that it is believed. The (D) axiom guarantees
that the agent’s beliefs are consistent: If the agent believes that ϕ, then it is not the case
that the agent believes that ¬ϕ. Finally, the (SB) axiom is characteristic of the strong form
of belief that Stalnaker has in mind: If the agent believes that ϕ, then she believes that
she knows that ϕ. Consult Stalnaker (2006) for further motivation and discussion of these
axioms. The important point here is that it turns out that the belief operator is definable
as possible knowledge. More formally, the following formula is derivable (see Section 2.3
for a formal definition of derivations) in Stalnaker’s logic:

(DefKB) [B]ϕ↔ 〈K〉[K]ϕ,

The derivation of this formula is left to the reader. It can also be shown that Stalnaker’s
belief operator defined using (DefKB) is a normal modal operator—i.e., the belief op-
erator validates all the axioms and rules mentioned in the introduction to this section.
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Furthermore, notice that by substituting 〈K〉[K]ϕ for [B]ϕ in (D), the following formula is
derivable:

(.2) 〈K〉[K]ϕ→ [K]〈K〉ϕ.

Stalnaker’s proposal is that knowledge is axiomatized by the S4 axioms and rules together
with the (.2) axiom (this logic is called S4.2). The other axioms listed above act as bridges
principles relating knowledge and belief. 6 An interesting line of inquiry is to study
subsystems of Stalnaker’s logic (Klein et al., 2015).

Exercise 9 (This exercise requires knowledge of relational semantics, see Appendix A.) Consider
the modal formula (^�p ∧^�q)→ ^�(p ∧ q).

1. Find a relational model with a state in which the above formula is not true.

2. Find an S4-relational model (i.e., a relational model with a reflexive and transitive relation)
with a state in which the above formula is false.

This analysis suggests an interesting way to define non-normal modal operators. Fix a
(normal) modal logic L with modalities �1, . . . ,�n. Define a new modality as a sequence
of modalities (or their duals) from L. In many cases, this will result in a non-normal modal
operator. Indeed, there is a sense in which every non-normal modal logic is generated
this way (cf. Gasquet and Herzig (1996), Kracht and Wolter (1999) and Section 2.6.2).

Logics of High Probability Suppose that the interpretation of �ϕ is “ϕ is assigned
‘high’ probability”, where “high” probability means above a certain threshold r ∈ [0, 1].
Under this interpretation, it is not hard to find a counterexample to the axiom scheme
(C). Suppose that p and q represent independent events (i.e., the probability of p ∧ q is
equal to the probability of p times the probability of q), and suppose that the threshold is
r = 2

3 . If both p and q are assigned probability 3
4 , then �p and �q are both true (i.e., the

probabilities of p and q are greater than the threshold). However, the probability of p ∧ q
is 3

4 ×
3
4 = 9

16 , which is less than the threshold. Thus, �(p ∧ q) is not true; and, therefore,
(�p ∧ �q) → �(p ∧ q) is not true under this interpretation. Note that this argument does
not work if we take the threshold to be 1.7

Deontic Logic Standard deontic logic interprets �ϕ as “it ought to be the case that ϕ”.
The following example shows that under this interpretation, the monotonicity rule (RM)
should not be valid. The example is known as the “Paradox of Gentle Murder” introduced
by J. Forrester (1984)8 Consider the following three statements:

1. Jones murders Smith.
6Consult Baltag et al. (2015, 2013) for an interesting topological interpretation of this modal logic.
7What happens if r < 1

2 ?
8See, also, Goble (1991, 2004) for discussions.
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2. Jones ought not to murder Smith.

3. If Jones murders Smith, then Jones ought to murder Smith gently.

Intuitively, these sentences appear to be consistent. However, 1 and 3 together imply that

4. Jones ought to murder Smith gently.

Also we accept the following conditional:

5. If Jones murders Smith gently, then Jones murders Smith.

Of course, this not a logical validity but, rather, a fact about the world we live in. Now, if
we assume that the monotonicity rule is valid, then statement 5 entails

6. If Jones ought to murder Smith gently, then Jones ought to murder Smith.

And so, statements 4 and 6 together imply

7. Jones ought to murder Smith.

But this contradicts statement 2. The above argument suggests that classical deontic logic
should not validate the monotonicity rule.

Logics of Ability There is a long history developing modal logics to reason about indi-
vidual abilities (see Horty, 2001; Pörn, 1977; Carr, 1979; Governatori and Rotolo, 2005, and
references therein). Without going into the intricacies of what it means for an individual
to exercise an “ability”, let Abliϕ mean that “the agent i has the ability to do something
that makes ϕ true”.

If we want Abli to be a modal operator interpreted on a relational structure, we
first have to decide whether it is a ‘box’ or a ‘diamond’ operator. The following two
examples demonstrate that neither interpretation is appropriate for the ability operator
Abli. Consider axiom (C) (�ϕ ∧ �ψ)→ �(ϕ ∧ ψ) and its dual ^(ϕ ∨ ψ)→ ^ϕ ∨^ψ. Both
are valid on all relational structures. The following examples show that reasoning about
abilities does not fit either of these patterns.

Example 1.25 (Counterexample for Abli(ϕ ∨ ψ)→ (Abliϕ ∨ Abliψ)) Suppose that
Ann is drawing cards from a normal deck of 52 cards. Let R be the proposition “Ann
draws a red card” and B the proposition “Ann draws a black card”. Now, since we are
assuming that Ann has the ability to choose a card, AblA(R ∨ B) is true: Ann can pick a
card that, as a matter of fact, is either red or black. That is, she has the ability to take
some action (pick a card) that makes R∨B true. However, assuming that Ann is a normal
card player and is using a standard deck of cards, there is no way that Ann can select
a card that guarantees that the card will be red (black). So, she has neither the ability
to choose a red card (¬AblAR) nor the ability to choose a black card (¬AblAB). Thus,
AblA(R ∨ B)→ (AblAR ∨ AblAB) is not true in this situation.
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Example 1.26 (Counterexample for (Abliϕ ∧ Abliψ)→ Abli(ϕ ∧ ψ)) Consider the follow-
ing game between Ann (A) and Bob (B)

As1

Bs3

po1 p, qo2

Bs4

p, qo3 qo4

Here, Ann has the first move, while Bob has the next. The game model also indicates
which propositional variables (p and q) are true at the outcome nodes (labeled o1, o2, o3
and o4).

We say that a player has the ability to force a set of outcome states X if that player has
a strategy that guarantees that the game will end in one of the states in X. For example,
in the above game, Ann has the ability to force the set X1 = {o1, o2}. This follows because
Ann has a strategy (move left) such that no matter what action Bob chooses, the outcome
of the game will be a state in X1. Similarly, Ann can also force the set X2 = {o3, o4}.
However, Ann cannot force the set X3 = {o2, o3} since Bob has the freedom to select either
o1 or o4 depending on Ann’s choice. Note that p is true at states {o1, o2, o3} and q is true at
{o2, o3, o4}. Thus, Ann has the ability to force p and the ability to force q (AblAp ∧ AblAq),
but she does not have the ability to force both p and q (¬AblA(p ∧ q)).

Motivated by the game-theoretic example used in Example 1.26, we can see that (Dual)
expresses an non-trivial fact about games. Often, ^ϕ is simply assumed to be defined as
¬�¬ϕ. The game-theoretical interpretation introduced in Example 1.26 suggests the
following interpretation of ^ϕ: “Bob has a strategy to ensure that ϕ is true”. A natural
assumption about a game is consistency: it cannot be the case that Ann can force ϕ to
be true and Bob can force ¬ϕ to be true. Thus, ¬(�ϕ ∧ ^¬ϕ) expresses that the game
is consistent. Using propositional reasoning, this formula is equivalent to �ϕ → ¬^¬ϕ.
The converse expresses a stronger game-theoretic assumption. Rewriting ¬^¬ϕ → �ϕ
as ^¬ϕ ∨ �ϕ, this formula says that “either Bob has a strategy to force ¬ϕ to be true or
Ann has a strategy to force ϕ to be true.” If we think of the formula ϕ as stating that Ann
has won the game, then this formula expresses that the game is determined (either Ann
or Bob has a winning strategy). Thus, �ϕ↔ ¬^¬ϕ is true for all consistent, two-person
determined games.

The Logic of Classical Deduction Naumov (2006) introduced a modal logic of classical
deduction. Suppose that At is a set of atomic propositions and that L0(At) ⊆ L(At) is
the set of propositional formulas generated from At. Let `0 denote the propositional
consequence relation. Fix a set of propositional formulas Σ ⊆ L0(At). An interpretation is
a function (·)∗ : At→ ℘(Σ) assigning a set of formulas from Σ to each atomic proposition.
An interpretation is extended to all modal formulas in L(At) as follows:

18



Neighborhood Semantics for Modal Logic Chapter 1, Section 1.3

• (ϕ ∧ ψ)∗ = (ϕ)∗ ∩ (ψ)∗.

• (¬ϕ)∗ = Σ − (ϕ)∗.

• (�ϕ)∗ = {α ∈ Σ | (ϕ)∗ `0 α}.

So, �ϕ denotes the set of propositional consequences (in the universe Σ) of the interpre-
tation of ϕ. It is not hard to see that under this interpretation, the axiom (C) is not valid.
Suppose that Σ is the set of propositional formulas generated from the set {p, q}. Fix an
interpretation with (p)∗ = {p} and (q)∗ = {q}. Then,

(p ∨ q) ∈ (�p ∧ �q)∗ = {α | {p} `0 α} ∩ {α | {q} `0 α}.

However,

(p ∨ q) < �(p ∧ q) = {α | (p ∧ q)∗ `0 α} = {α | p∗ ∩ q∗ `0 α} = {α | ∅ `0 α}.

Thus, under this interpretation, (�p∧�q)→ �(p∧q) is not true (i.e., (�p∧�q)∗ * (�(p∧q))∗).
Consult Naumov (2006) for further discussion of this modal logic.

The Logic of Group Decision Making The final interpretation that I discuss in this
section comes from Social Choice Theory. Suppose that α ∈ L0(At) is a propositional
formula and I is a set of voters. The interpretation of �α explored below is “the group
of voters I collectively accept α”. In the remainder of this section, I restrict the modal
language so that only propositional formulas are within the scope of a modal operator.
So, for instance, ��p is not a well-formed formula. Formally, the modal language of
group decision making, denoted L[(At), is the smallest set of formulas generated by the
following grammar:

�α | ¬ϕ | (ϕ ∧ ψ)

where α ∈ L0(At).
The basic idea is that each voter i ∈ I submits a propositional valuation vi : L0(At)→

{0, 1}. The interpretation is that if vi(α) = 1, then the voter i judgesα to be true (alternatively,
I will say “voter i accepts α”). Given a tuple of propositional valuations (one for each
voter)9, formulas of the form �α are interpreted with respect to a group decision-making
method. Different ways of aggregating the voters’ opinions validate10 different modal
principles. For example, as the reader is invited to check, all the instances (in the language
L
[) of the schemas mentioned in the introduction to this section are valid if �α means

that there is consensus among the voters in I that α is true. To illustrate, consider axiom
(C): If everyone judges that α1 is true (i.e., for all i, vi(α1) = 1) and everyone judges that
α2 is true (i.e., for all i, vi(α2) = 1), then everyone judges that α1 ∧ α2 is true (i.e., for all i,

9Such a tuple is called a profile in the social choice literature.
10In this context, a formula ϕ ∈ L[ is valid with respect to a group-decision method provided that ϕ is true

given any profile of propositional valuations.
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vi(α1∧α2) = 1). Thus, the axiom (C), �α1∧�α2 → �(α1∧α2), is valid. However, (C) is not
valid if the the group uses majority rule to make group decisions. The counterexample
is the so-called doctrinal paradox, which has been extensively discussed in the judgement
aggregation literature (List, 2013; Grossi and Pigozzi, 2014). Suppose that there are three
voters I = {i, j, k} that submit the following valuations:

p q p ∧ q
i 1 1 1
j 1 0 0
k 0 1 0

Majority 1 1 0

Then, a majority of the voters accept p and a majority of voters accept q, but only a
minority of voters accept p ∧ q. That is, (�p ∧ �q) → �(p ∧ q) is not true given the above
profile of propositional valuations. Thus, (�α1 ∧ �α2)→ �(α1 ∧ α2) is not valid when the
group uses majority rule to make decisions. Consult Pauly (2007) and Daniëls (2011) for
a complete discussion of this interesting interpretation of modal logic.

Exercise 10 Find other examples in the literature that motivate interest in non-normal modal
logics.

1.4 Why Neighborhood Structures?

In the previous section, I motivated interest in non-normal modal logics by pointing out
that there are natural interpretations of the basic modal language that invalidate some
theorems and valid rules of any normal modal logic. In this section, I focus on neigh-
borhood structures themselves. The goal is to demonstrate that neighborhood models
are an interesting and rich class of mathematical structures that can be fruitfully studied
using modal logic. I have already pointed out that many areas of mathematics use sets
paired with collections of subsets satisfying certain algebraic properties. Thus, there is
general mathematical interest in developing modal languages for reasoning about these
specific classes of neighborhood models. The most interesting mathematical structures
that fall into this category are topologies. In Section 1.4.1, I introduce topological mod-
els for modal logic and show how they are related to neighborhood models. Another
mathematical structure that is closely related to neighborhood models is a hypergraph
(Bretto, 2013). In Section 1.4.2, I briefly discuss an application of hypergraphs in social
choice theory. Nevertheless, general mathematical interest is not the only reason to study
neighborhood models. Some natural interpretations of neighborhood models make them
useful in formal epistemology and game theory. In the remainder of this chapter, I explain
how neighborhood models can be used as a semantics for a logic of evidence and belief
(Section 1.4.4), as a semantics for conditionals (Section 1.4.3), or to reason about what
players can achieve in game situations (Section 1.4.5).
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1.4.1 Topological Models

Much of the original motivation for neighborhood structures as a semantics for modal
logic comes from elementary point-set topology. In this section, I discuss topological
semantics for modal logic. There is a very extensive literature on the topological interpre-
tation of modal logic. It is beyond the scope of this book to discuss all the issues from this
literature. Consult van Benthem and Bezhanisvilli (2007); Kremer (2013); Bezhanishvili
et al. (2015); Beklemishev and Gabelaia (2014); and Kudinov and Shehtman (2014) for
broader surveys and discussions of the main results.

The idea to interpret the basic modal language on topological models is usually
attributed to McKinsey and Tarksi (1944). I start by reviewing some concepts from
point-set topology. More information can be found in any point-set topology text book
(Dugundji, 1966, is an excellent choice).

Definition 1.27 (Topological Space) A topological space is a subset space 〈W,T〉, where
W is a nonempty set and

1. W ∈ T and ∅ ∈ T ;

2. T is closed under finite intersections; and

3. T is closed under arbitrary unions. /

Elements O ∈ T are called opens. A set C such that W − C ∈ T is said to be closed.

Exercise 11 Suppose that 〈W,T〉 is a topological space. Prove that the collection of closed sets,
TC = {C | W − C ∈ T }, has the following properties: 1) W ∈ TC and ∅ ∈ TC; 2) TC is closed
under finite unions; and 3) TC is closed under arbitrary intersections.

Suppose that 〈W,T〉 is a topological space and X ⊆ W is any set. The largest open
subset of X is called the interior of X, denoted Int(X). Formally,

Int(X) =
⋃
{O | O ∈ T and O ⊆ X}.

The smallest closed set containing X is called the closure of X, denoted Cl(X). Formally,

Cl(X) =
⋂
{C |W − C ∈ T and X ⊆ C}.

It is easy to see that a set X is open if Int(X) = X and closed if Cl(X) = X.

Lemma 1.28 Let 〈W,T〉 be a topological space and X,Y ⊆W. Then,

1. Int(X ∩ Y) = Int(X) ∩ Int(Y).

2. Int(∅) = ∅, Int(W) = W.

3. Int(X) ⊆ X.

4. Int(Int(X)) = Int(X).
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Exercise 12 Suppose that 〈W,T〉 is a topological space. Show that for all X ⊆ W, Int(X) =
W − Cl(W − X). Use this fact to derive properties analogous to those from Lemma 1.28 for Cl(·).

More formally, every topological space 〈W,T〉 defines an interior operator Int : ℘(W) →
℘(W) (where for all X ⊆ W, Int(X) is defined as above) satisfying the properties from
Lemma 1.28 and a closure operator Cl : ℘(W) → ℘(W) (where for all X ⊆ W, Cl(X) is
defined as above) satisfying the properties from Exercise 12.

Topological spaces can be used as a semantics for a propositional modal language by
interpreting the Boolean connectives in the usual way and interpreting the modalities as
operators associated with the topology. For instance, McKinsey and Tarski interpret the
box-modality as the interior operator for a topological space.

Definition 1.29 (Topological Model) A topological model is a tuple 〈W,T ,V〉, where
〈W,T〉 is a topology; and V : At→ ℘(W) is a valuation function. /

Suppose thatMT = 〈W,T ,V〉 is a topological model. Formulas ofL(At) are interpreted at
states w ∈W. The Boolean connectives and atomic propositions are interpreted as usual.
The definition of truth for the modal operator is:

M
T,w |= �ϕ iff there is an O ∈ T , such that w ∈ O and for all v ∈ O, MT, v |= ϕ.

The usual logical notions of validity and satisfiability are defined in the standard way.
Recall the notation for the truth set of a formula ϕ ∈ L(At): [[ϕ]]MT = {w | MT,w |= ϕ}.
It is an immediate consequence of the definitions that for any formula ϕ ∈ L(At) and
topological modelMT, [[�ϕ]]MT = Int([[ϕ]]MT ).

Example 1.30 (The Usual Topology) Suppose that MT = 〈R,TR,V〉, where R is the set
of real numbers; TR = {X | for all x ∈ X there is an ε > 0 such that (x − ε, x + ε) ⊆ X}; and
V : At → ℘(R) is a valuation function with V(p) = (0,∞) = {x | x ∈ R, x > 0}. The
topological space 〈R,TR〉 is called the usual topology on R. A set is open in the usual
topology if it can be written as the union of open intervals. Since 0 < Int([[p]]MT ) = (0,∞),
we have MT, 0 6|= �p. Furthermore, [[¬p]]MT = (−∞, 0] = {x | x ∈ R and x ≤ 0}, and so
0 < Int([[¬p]]MT ) = (−∞, 0). Thus,MT, 0 6|= �¬p. Therefore,MT, 0 6|= �p ∨ �¬p.

There are other operators associated with topological spaces that can be used as a se-
mantics for a modal operator. One influential approach is to use the derived set operator.
11 Suppose that 〈W,T〉 is a topological space. A point w ∈ W is called a limit point
of X ⊆ W provided that for each open set O ∈ T such that w ∈ O, X ∩ (O − {x}) , ∅.
The derived set operator is a function Der : ℘(W) → ℘(W), where for all X ⊆ W,
Der(X) = {w | w is a limit point of X} (Der(X) is also called the derivate of X). The de-
rived set operator is often used as an alternative characterization of closed sets.

11This interpretation was originally suggested by McKinsey and Tarksi (1944). Consult Bezhanishvili et al.
(2010) and Shehtman (1990) for further elaborations of this idea.
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Exercise 13 Suppose that 〈W,T〉 is a topological space. Prove that for any set X ⊆ W, Cl(X) =
X ∪Der(X).

The key idea is to interpret the diamond modality as the derived set operator. To help
keep the two different topological interpretations of the propositional modal language
straight, I will use different symbols for the modalities when the diamond operator is
interpreted as the derived set operator (〈·〉 instead of ^ and � instead of �). Suppose that
M

T = 〈W,T ,V〉 is a topological model with w ∈ W. The definition of truth for the two
modalities is:

M
T,w |= �ϕ iff there is O ∈ T , such that w ∈ O and for all v ∈ O − {w}, MT, v |= ϕ.

M
T,w |= 〈·〉ϕ iff for all O ∈ T with w ∈ O, there is a v ∈ O − {w} such that MT, v |= ϕ.

Example 1.31 (The Usual Topology, again) Suppose that MT = 〈R,TR,V〉, where R is
the set of real numbers; 〈R,TR〉 is the usual topology (see Remark 1.30); and V : At →
℘(R) is a valuation function with V(p) = { 1n | n ≥ 1}. Then, MT, 0 |= 〈·〉p. That is,
0 ∈ Der([[p]]MT ) = [[〈·〉ϕ]]MT . We also have thatMT, 0 6|= 〈·〉〈·〉p. In fact, Der([[〈·〉p]]MT ) = ∅.

Topological Spaces and Relational Structures There is a well-known connection be-
tween relational frames (Appendix A) and certain topological spaces (see van Benthem
and Bezhanisvilli, 2007, for a complete discussion). A topological space 〈W,T〉 is called
an Alexandroff space provided that for any (not just finite) X ⊆ T ,

⋂
X ∈ T . That is,

an Alexandroff topology has the additional property that arbitrary intersections of open
sets are open. Now, suppose that 〈W,R〉 is a reflexive and transitive relational frame—i.e.,
the relation R ⊆ W ×W is reflexive and transitive. Such a relational frame is called an
S4-frame. The first observation is that every S4-relational frame defines a topological
space. A set X ⊆W is called an R-upset, denoted X↑R (or X↑ when it is understood that R
is the relation), provided that w ∈ X and w R v implies that v ∈ X. The set of R-upsets for
a reflexive and transitive relation R forms an Alexandroff topology:

Exercise 14 Suppose that 〈W,R〉 is reflexive and transitive relational frame. Let 〈W,TR〉 be a
subset space where TR = {X | X is an R-upset}. Prove that 〈W,TR〉 is an Alexandroff topology.

We can also construct an S4-relational frame from a topology. Suppose that 〈W,T〉 is
a topological space. The specialization order, RT ⊆W ×W, is defined as follows w RT v
iff v ∈ Cl({w}). Thus, w RT v provided that v is in every closed set that contains w. It is
not hard to see that 〈W,RT 〉 is an S4-relational frame: It is immediate that RT is reflexive.
To see that RT is transitive, suppose that v ∈ Cl({w}) and z ∈ Cl({v}). Let C be any closed
set containing w. Then, since v ∈ Cl({w}), we have v ∈ C. Also, since v ∈ C, C is closed and
z ∈ Cl({v}), we have z ∈ C. Thus, z is in every closed set containing w—i.e., z ∈ Cl({w}).
Thus, every topological space 〈W,T〉 is associated with an S4-relational frame 〈W,RT 〉.
However, while every topology can be associated with an S4-relational frame, there is a
much tighter connection when the topology is Alexandroff.
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Exercise 15 Suppose that 〈W,T〉 is a topological space. Prove that

• T ⊆ TRT ; and

• T = TRT iff T is Alexandroff.

Topological Spaces and Neighborhood Structures Suppose that 〈W,T〉 is a topological
space. For each w ∈ W, the set of open sets containing w is Tw = {O | O ∈ T and w ∈ O}.
A neighborhood (in the topological sense) of a point w ∈ W is a set X such that there
is some O ∈ Tw such that O ⊆ X. That is, X is a neighborhood of w if X contains an
open set containing w. For example, in the usual topology on R, the interval [0, 1] is a
neighborhood of 1

2 , but it is not a neighborhood of either endpoint (i.e., there is no open
set containing 0 completely contained in [0, 1], and similarly for 1).

Definition 1.32 (Neighborhood System) Suppose that 〈W,T〉 is a topology. A neighbor-
hood system for T is a function NT : W → ℘(℘(W)) such that

NT (w) = {X | there is an O ∈ Tw such that O ⊆ X} /

Exercise 16 Suppose that 〈W,T〉 is a topological space. Prove that for all w ∈ W, NT (w) is a
consistent filter, and that w ∈

⋂
NT (w).

Neighborhood systems satisfy an additional property that ties together the neigh-
borhoods of different states. Before stating the property, notice that that for all w ∈ W,
Tw ⊆ NT (w). That is, any open set containing w is a neighborhood of w (such a set is
called an open neighborhood). 12 If X is an open neighborhood of w (i.e., X ∈ Tw), then
X is a neighborhood of all of its elements. Thus, any neighborhood system NT satisfies
the following property:

For all w ∈W, for all X ∈ NT (w), there is a Y ⊆ X such that for all v ∈ Y, Y ∈ NT (v).

Using Definition 1.32, we have that every 〈W,T〉 is associated with a neighborhood
frame 〈W,NT 〉. It turns out that a class of neighborhood frames well-known to modal
logicians gives rise to topological spaces:

Definition 1.33 (S4 Neighborhood Frame) A neighborhood frame 〈W,N〉 is an S4 neigh-
borhood frame provided that N satisfies the following properties. For each w ∈W:

1. N(w) is a consistent filter;

2. w ∈
⋂

N(w); and

3. for each X ⊆W, if X ∈ N(w), then {v | X ∈ N(v)} ∈ N(w). /

12Typically, NT (w) * Tw. That is, in most topologies, there are neighborhoods that are not open.
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Proposition 1.34 Suppose that 〈W,N〉 is an S4-neighborhood frame. Then, there is a topology
〈W,TN〉 such that for all w ∈W, N(w) = NTN (w).

Proof. Suppose that 〈W,N〉 is an S4-neighborhood frame. Let 〈W,TN〉 be a subset space
where

TN = {X | for all w ∈W, if w ∈ X, then X ∈ N(w)}.

We first show that 〈W,TN〉 is a topology. Trivially, ∅ ∈ TN. Furthermore, W ∈ TN since,
for all w ∈ W, W ∈ N(w) (this follows from the fact that each N(w) is a consistent filter).
Suppose that O1,O2 ∈ TN and let v ∈ O1 ∩O2. Then, v ∈ O1 and v ∈ O2. Hence, O1 ∈ N(v)
and O2 ∈ N(v). Since N(v) is a filter, O1 ∩ O2 ∈ N(v); and so, O1 ∩ O2 ∈ TN. Finally,
suppose that {Oi}i∈I ⊆ TN for some index set I. Suppose that v ∈

⋃
i∈I Oi. Then, v ∈ Oi

for some i ∈ I. Since Oi ∈ TN, we have that Oi ∈ N(v). Therefore, since Oi ⊆
⋃

i∈I Oi and
N(v) is a filter,

⋃
i∈I ∈ N(v). Thus,

⋃
i∈I Oi ∈ TN. This concludes the proof that 〈W,TN〉 is a

topology.
To conclude the proof, we show that for all w ∈ W, N(w) = NTN (w). Suppose that

w ∈ W. If X ∈ NTN (w), then there is some set O ∈ TN such that w ∈ O ⊆ X. Since O ∈ TN
and w ∈ O, we have that O ∈ N(w). Furthermore, since O ⊆ X and N(w) is a filter, we
have that X ∈ N(w). Hence, NTN (w) ⊆ N(w). Now, suppose that X ∈ N(w). We must show
that there is some O ∈ TN such that w ∈ O ⊆ X. Let O = {v | X ∈ N(v)}. Since X ∈ N(w),
w ∈ O. Furthermore, if v ∈ O, then X ∈ N(v) and v ∈

⋂
N(v) ⊆ X. Finally, by item 3 of

Definition 1.33, since X ∈ N(w), O = {v | X ∈ N(v)} ∈ N(w). Thus, X ∈ NTN (w), and so,
N(w) ⊆ NTN (w). Therefore, N(w) = NTN (w), as desired. asdas f das qed

Exercise 17 Using Proposition 1.34, prove that for each S4 neighborhood model M, there is a
topological modelMT such that for all ϕ ∈ L, [[ϕ]]M = [[ϕ]]MT .

Since every topological model can be viewed as an S4 neighborhood model (i.e., a
neighborhood model that satisfies the properties from Definition 1.33), we can say that the
class of topological models is modally equivalent to the class of S4-neighborhood models
(this is explained in more detail in Section 2.1).

1.4.2 Hypergraphs

A directed graph is a pair (W,E) where W is a non-empty set, elements of which are called
nodes or vertices, and E ⊆ W ×W, elements of which are called edges (cf. the definition
of a relational frame in Appendix A). For an undirected graph, it is often convenient to let
E be a set of subsets of W of size two. In this case, {w, v} ∈ E means that there is an edge
between w and v. A hypergraph generalizes an undirected graph. 13 Thus, a hypergraph
is a subset space (W,E), where E ⊆ ℘(W) and ∅ < E. The mathematical theory of finite
hypergraphs is very well-developed (Bretto, 2013), with applications in combinatorics
and optimization problems. Hypergraphs are also used in cooperative game theory and

13There is also a way to define a directed hypergraph, although we will not discuss it in this short section.
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social choice theory, where they are called simple games (Taylor and Zwicker, 1999). In
this section, I briefly introduce simple games, highlighting an issue that we will return to
when discussing the core theory in Chapter 2.

Suppose that I is a finite set of voters. A simple game on I is a monotonic subset
space (I,W): I , ∅, W ⊆ ℘(I) such that for all U,V ⊆ I, if U ∈ W and U ⊆ V, then
V ∈ W. Elements U ∈ W are called winning coalitions. The intended interpretation is
that the set U of voters is a winning coalition iff the group selects an option (e.g., the bill
or amendment passes, or the candidate is elected) when the voters in U are the ones who
voted for it. Given this interpretation, it is clear why it is assumed that all supersets of a
winning coalition are winning coalitions. For example, suppose that I = {a, b, c, d, e}, and
consider the following winning coalitions:

W = {{d, e}, {a, b, c, e}, {a, b, d}, {b, c, d}, {a, c, d}, {a, b, c, d}, {a, b, c, d, e}}.

In this example, {d, e} ∈ W means that, in any voting situation, the group will accept any
issue that both d and e agree on. The same is true for the other winning coalitions inW.

An important class of simple games is one that is generated by a quota rule. A
simple game (I,W) is said to be weighted if there is a function weight : I → R and
quota q ∈ R, such that for all U ⊆ I, U ∈ W iff

∑
u∈U weight(u) ≥ q. For instance, the

above simple game is generated by the weight function weight : {a, b, c, d, e} → R where
weight(a) = weight(b) = weight(c) = 1, weight(d) = 3 and weight(e) = 2 with the quota q = 5.
As the reader is invited to verify, the sum of the weights for all the voters in any winning
coalition fromW is at least 5.

There is a natural ordering on simple games. Suppose that voters a and b always vote
the same way and that voters d and e always vote the same way. In this case, we say that
voters {a, b} and {d, e} form voting blocs. It is natural to identify the voters in a voting
bloc and treat them as a single voter. Formally, there is an onto function f : I → I′ where
I′ = {a′, c, d′} with f (a) = f (b) = a′, f (c) = c, and f (d) = f (e) = d′. This function can be
depicted as follows:

a b c d e

a′ c d′

The winning coalitions for the reduced set of voters I′ are read off from the original simple
game (assuming that the quota is still q = 5). For example, {d′} is a winning coalition since
f−1[{d′}] = {d, e} ∈ W. Continuing in this manner, the set of winning coalitions for I′ is:

W
′ = {{d′}, {a′, d′}, {c, d′}, {a′, c, d′}}

Note that the simple game (I′,W′) is a dictatorship since there is a single voter d′ ∈ I′

such that for all U ⊆ I′, U ∈ W′ iff d′ ∈ U. This makes sense since d′ represents two voters
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(d and e) that always vote the same way and whose total weight is 5. This construction is
known as the Rudin-Keisler ordering, used in the study of ultrafilters.

Definition 1.35 (Rudin-Keisler Ordering) Suppose that G = (I,W) is a simple game.
The simple game G′ = (I′,W′) is a RK-projection of (I,W), denoted G′ ≤RK G, if there
is a surjective function f : I → I′ such that for all X ⊆ I′, X ∈ W′ iff f−1[X] ∈ W. If
G
′
≤RK G, then G′ is said to be an RK-projection of G. /

The Rudin-Keisler ordering is important because it preserves many properties of simple
games. For instance, it is not hard to see that G′ = (I′,W′) is a weighted simple game
(let weight(a′) = 2, weight(c) = 1 and weight(d′) = 5 with q = 5). More generally, it is not
hard to see that if G is a weighted simple game and G′ ≤RK G, then G′ is a weighted
simple game. The RK-projection is our first example of a transformation between subset
spaces that is intended to preserve important properties. Identifying properties that are
preserved by transformations on neighborhood models is an important theme that will
be discussed in the next chapter.

Exercise 18 1. A simple game G = (I,W) is called proper if for all X ⊆ I, if X ∈ W, then
XC <W. Prove that if G is proper and G′ = (I′,W′) ≤RK G, then G′ is also proper.

2. Suppose that G = (I,W) is a simple game. A set X ⊆ I is said to be losing if X <W. A
simple game is called strong provided that for all sets of voters X, if X is losing, then its
complement XC is not losing. Prove that if G is strong and G′ = (I′,W′) ≤RK G, then G′

is also strong.

1.4.3 Conditional Logic

One of the earliest applications of neighborhood models is found in David Lewis’s seminal
book Counterfactuals (1973). In this book, Lewis developed a semantics of conditionals
using sets of spheres.

Definition 1.36 (Sets of Spheres) A set of spheres is a subset space 〈W,S〉, where

• S is nested: For all S,T ∈ S, either S ⊆ T or T ⊆ S.

• S is closed under unions: If {Si | i ∈ I} ⊆ S for some index set I, then
⋃

i∈I Si ∈ S.

• S is closed under intersections: If {Si | i ∈ I} ⊆ S for some index set I, then
⋂

i∈I Si ∈ S.

We say that a system of spheres 〈W,S〉 is centered on w ∈W provided that {w} ∈ S. /

Definition 1.37 (Sphere Frames/Models) A sphere frame is a neighborhood frame 〈W,N〉,
where W , ∅ and for all w ∈W, 〈W,N(w)〉 is a set of spheres. We say that 〈W,N〉 is centered
provided that for all w ∈W, N(w) is centered on w.

A sphere model is a tuple 〈W,N,V〉where 〈W,N〉 is a sphere frame and V : At→ ℘(W)
is a valuation function. /
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The idea is that each set in N(w) contains all the states that are “similar” to w to a certain
degree. The smaller the sphere (in terms of the subset relation) the more similar the worlds
are to w. Lewis explains the intended interpretation of a set of spheres 〈W,N(w)〉 as follows
(in the following quote, I adapt Lewis’s notation so that it is consistent with this book):

The system of spheres used in interpreting counterfactuals is meant to carry
information about the comparative overall similarity of worlds. Any par-
ticular sphere around a world w is to contain just the worlds that resemble
w to at least a certain degree. This degree is different for different spheres
around w, The smaller the sphere the more similar to w must a world be to
fall within it...[W]henever one world lies within some sphere around w and
another world lies outside that sphere, the first world is more closely similar
to w than the second. (Lewis, 1973, pg. 14)

The language of conditional logic is a propositional modal language with a binary
modality. Formally, the language Lcond(At) is the smallest set of formulas generated by
the following grammar:

p | ¬ϕ | (ϕ ∧ ψ) | (ϕ� ψ)

where p ∈ At (the set of atomic propositions). The other Boolean connectives (∨,→, and
↔) are defined as usual. The dual of the conditional modality, denotedϕ� ψ, is defined
as ¬(ϕ� ¬ψ). The intended interpretation of ϕ� ψ is “if ϕ, then ψ”.

Truth of formulas ϕ ∈ Lcond is defined at states w from a sphere modelM = 〈W,N,V〉.
The Boolean connectives are defined as usual. Truth of the conditional modality is defined
as follows:

M,w |= ϕ � ψ iff either
⋃

N(w) ∩ [[ϕ]]M = ∅ or there is a S ∈ N(w) such that
[[ϕ]]M ∩ S , ∅ and [[ϕ]]M ∩ S ⊆ [[ψ]]M.

The usual logical notions of validity and satisfiability are defined in the standard way.
The conditional modality ϕ� ψ is true at a state w provided that either there is no state
in any sphere from N(w) satisfying ϕ or all the states satisfying ϕ that are most similar
to w also satisfy ψ. Lewis argues that this definition conforms to our intuitions about
inference patterns involving conditionals.

Example 1.38 (Failure of Monotonicity) The first example highlights a crucial difference
between the conditional modality ϕ � ψ and the material conditional ϕ → ψ. It
is not hard to see that the material conditional (→) satisfies the following monotonic-
ity property: if ϕ → ψ is valid, then so is (ϕ ∧ χ) → ψ. However, consider the
following example: For many people it is true that ”if you put sugar in your cof-
fee, then it will taste good”. However, from this statement, one cannot infer that “if
you put sugar and gasoline in your coffee, then it will taste good”. This is a case in
which our intuitions about inferences involving conditionals diverge from valid infer-
ence rules involving the material conditional. Lewis’s conditional modality does not
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satisfy this monotonicity property. To illustrate, let M = 〈W,N,V〉 be a sphere model
with W = {w, v1, v2, v3, v4, v5, v6}; N(w) = {S1,S2,S3,S4} with S1 = {w}, S2 = {w, v1},
S3 = {w, v1, v2} and S4 = {w, v1, v2, v3, v4, v5, v6}; and V(p) = {v2, v4, v5}, V(q) = {v1, v2, v5, v6}

and V(r) = {v3, v4}. Then,M,w |= p � q since [[p]]M ∩ S3 = {v2} ⊆ [[q]]M = {v1, v2, v5, v6};
however,M,w 6|= (p∧ r) � q since S4 is the only element of N(w) that overlaps [[p ∧ r]]M,
but [[p ∧ r]]M∩S4 = {v4} * [[q]]M. The set of spheres 〈W,N(w)〉 is depicted below (the lined
region is [[p]]M ∩ S3 and the grayed region is [[p ∧ r]]M ∩ S4):

w v1 v2

v3
v4

v5

v6

r
p

q

S1S2S3S4

Exercise 19 Find a sphere modelM = 〈W,N,V〉 with a state w ∈W such that p � q is true at
w, (p ∧ r1) � q is false at w, and (p ∧ (r1 ∧ r2)) � q is true at w.

Example 1.39 (Failure of Transitivity) Another property of the material conditional that
is not satisfied by the conditional modality is transitivity: ((ϕ → ψ) ∧ (ψ → χ)) →
(ϕ → χ) is valid. However, the following example from Stalnaker (1968) illustrates that
conditionals should not necessarily satisfy this transitivity property:

1. If Hoover had been born a Russian, he would have been a communist.

2. If Hoover were a communist, he would have been a traitor.

3. If Hoover had been born a Russian, then he would have been a traitor.

Intuitively, the first two statements are true; yet, the third is false. To see that the
conditional modality does not satisfy this transitivity property, let M = 〈W,N,V〉 be a
sphere model with W = {w, v1, v2, v3, v4, v5}; N(w) = {S1,S2,S3,S4} with S1 = {w}, S2 =
{w, v1}, S3 = {w, v1, v2} and S4 = {w, v1, v2, v3, v4, v5}; and V(p) = {v2, v4}, V(q) = {v1, v2, v4}

and V(r) = {w, v1}. Then,M,w |= p � q since [[p]]M ∩ S3 = {v2} ⊆ [[q]]M = {v1, v2, v4} and
M,w |= q � r since [[q]]M ∩ S2 = {v1} ⊆ [[r]]M = {w, v1}; however,M,w 6|= p � r since S3
and S4 are the only sets that overlap [[p]]M, but [[p]]M ∩ S3 * [[q]]M and [[p]]M ∩ S4 * [[q]]M.
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The set of spheres 〈W,N(w)〉 is depicted below (the lined region is [[p]]M ∩ S3 and the
grayed region is [[q]]M ∩ S2):

w v1 v2

v3

v4

v5

r

p

q

S1S2S3S4

Exercise 20 Prove that Modus Tollens is valid for the conditional modality: If ϕ� ψ and ¬ψ
are both valid, then ¬ϕ is valid.

Prove that the rule of contraposition is not valid: Find a sphere modelM = 〈W,N,V〉 and a
state w such that w |= p � q, yet w 6|= ¬q � ¬p.

Exercise 21 Find a sphere model 〈W,N,V〉 with a state w ∈ W such thatM,w 6|= p � q and
M,w 6|= p � ¬q.

Remark 1.40 (Lewis vs. Stalnaker) Exercise 21 shows that conditional excluded middle:

(ϕ� ψ) ∨ (ϕ� ¬ψ)

is not valid on sphere models. This principle distinguishes Lewis’s semantics from an-
other well-known semantics for conditionals proposed by Stalnaker (Stalnaker, 1968;
Stalnaker and Thomason, 1970). The crucial observation is that conditional excluded
middle is valid on sphere models with an additional constraint:

Stalnaker’s condition: Suppose thatM = 〈W,N,V〉 is a sphere model. If [[ϕ]]M∩
⋃

N(w) , ∅,
then there is some S ∈ N(w) such that S ∩ [[ϕ]]M is a singleton.

Thus, according to Stalnaker, ϕ � ψ is true at a state w provide ψ is true at the world
v satisfying ϕ that is most similar to w. A complete comparison between Lewis’s and
Stalnaker’s semantics of conditionals is beyond the scope of this book (see Lewis, 1973,
Section 3.4).
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The above examples and exercises highlight important differences between the logic
of the conditional modality and the logic of the material conditional. Consult Lewis
(1973) for a complete discussion of the main logical and philosophical issues (cf. also
Arló-Costa, 2007). I conclude this brief introduction to Lewis semantics for conditionals
with some remarks about modal languages interpreted on sphere models.

The main observation is that there are other modal operators beyond the conditional
modality, ϕ� ψ, that can be used to reason about sphere models. Two natural examples
are Lewis’s “inner” and “outer” modalities. The outer modality, denoted [o]ϕ, describes
what is true at any state in any sphere. More formally, the definition of truth at a state w
in a sphere modelM = 〈W,N,V〉 is:

M,w |= [o]ϕ iff
⋃

N(w) ⊆ [[ϕ]]M.

Note that the definition of truth for [o]ϕ is the same as the definition of truth of [ ]ϕ
from Section 1.2.2. Furthermore, the outer modality is definable using the conditional
modality. To see this, note that the following formula is valid:

[o]ϕ ↔ ¬ϕ� ⊥

I leave it to the reader to verify the validity of the above formula. Lewis calls the above
modality the “outer modality” since it describes what is true in the outermost sphere
(since the set of spheres are nested and closed under unions,

⋃
N(w) must be the largest14

sphere in N(w)). The “inner” modality, denoted [i]ϕ, describes what is true at all states
in the smallest sphere (if one exists 15). The definition of truth for [i]ϕ is essentially the
definition of truth for the 〈 ] modality (see Section 1.2.2):

M,w |= [i]ϕ iff there is some S ∈ N(w) such that ∅ , S ⊆ [[ϕ]]M.

This modal operator is also definable in terms of the conditional modality. To see this,
consider the following formula:

[i]ϕ↔ >� ϕ.

As the reader is invited to check, the above formula is valid on all sphere models 〈W,N,V〉
in which for all w ∈W, N(w) , ∅.

Lewis’s analysis of conditionals uses a second binary modality, denoted ϕ � ψ, with
the intended interpretation that “ϕ is at least as possible as ψ” or “it is no more far-fetched
that ϕ than that ψ” (Lewis, 1973, Section 2.5). Truth is defined as follows:

M,w |= ϕ � ψ iff for all S ∈ N(w), if S ∩ [[ψ]]M , ∅, then S ∩ [[ϕ]]M , ∅.

14That is, “largest” in terms of the subset relation.
15Another natural constraint on sphere frames 〈W,N〉 is the limit assumption: for all w ∈ W and X ⊆ W, if

X ∩
⋃

N(w), then there is a smallest Y ∈ N(w) such that X ∩ Y , ∅.
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It is not hard to see that that � is an ordering (i.e., a connected and transitive relation).
I will show that � is a connected relation and leave the proof that � is transitive as
an exercise. Let M = 〈W,N,V〉 be a sphere model with w ∈ W, and suppose that
M,w 6|= (ϕ � ψ) ∨ (ψ � ϕ). Then,

1. there is a S ∈ N(w) such that S ∩ [[ψ]]M , ∅ and S ∩ [[ϕ]]M = ∅; and

2. there is a S′ ∈ N(w) such that S′ ∩ [[ϕ]]M , ∅ and S′ ∩ [[ψ]]M = ∅.

Since the set of spheres is nested, either S ⊆ S′ or S′ ⊆ S. If S ⊆ S′, then by 1, S′∩[[ψ]]M , ∅,
which contradicts 2. Similarly, if S′ ⊆ S, then by 2, S ∩ [[ϕ]]M , ∅, which contradicts 1.
Thus,M,w |= (ϕ � ψ) ∨ (ψ � ϕ); and so (ϕ � ψ) ∨ (ψ � ϕ) is valid on all sphere models.

Exercise 22 Prove that (ϕ � ψ) ∧ (ψ � χ)→ (ϕ � χ) is valid on all sphere models.

As usual, a “strictly more possible” ordering, denoted ϕ ≺ ψ, can be defined as (ϕ �
ψ) ∧ ¬(ψ � ϕ). 16 Thus, the definition of truth for ϕ ≺ ψ is:

M,w |= ϕ ≺ ψ iff there is an S ∈ N(w) such that S ∩ [[ϕ]]M , ∅ and S ∩ [[ψ]]M = ∅.

An important observation is that relative possibility modality ≺ and the conditional
modality � are interdefinable. To see this, note that the following formulas are valid on
all sphere models:

(ϕ� ψ) ↔ ((ϕ ≺ ⊥)→ ((ϕ ∧ ψ) ≺ (ϕ ∧ ¬ψ)))

(ϕ ≺ ψ) ↔ 〈o〉(ϕ ∨ ψ) ∧ ((ϕ ∨ ψ) � ψ)

where 〈o〉χ is defined as¬[o]¬χ (which, as shown above, is definable using the conditional
modality).

Exercise 23 Verify that the above two formulas are valid on all sphere models.

I conclude this section by noting that sphere models can also be used as a semantics
for a logic of belief and belief revision (Grove, 1988; Board, 2004; Baltag and Smets, 2006a).
In the literature on modal logics of beliefs and belief revision, the conditional modality
ϕ � ψ is typically denoted [B]ϕψ and represents an agent’s conditional beliefs. I follow
this convention in the subsequent chapters.

1.4.4 A Logic of Evidence and Belief

In this section, I present a logical framework, developed in a series of papers (van Benthem
and Pacuit, 2011; van Benthem et al., 2012, 2014), in which neighborhood structures are
used to represent an agent’s beliefs at some fixed moment in time. The key idea is that the

16There is also a “equally possible relation”, denoted ϕ ≈ ψ, defined as (ϕ � ψ) ∧ (ψ � ϕ).
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neighborhoods at a state represent the set of evidence available to the agent at that state.
The agent’s beliefs are then derived from this set of evidence.

Let W be a set of states (or possible worlds), one of which represents the “actual” world.
Assume that there is an agent that gathers evidence about this actual state from a variety
of sources. To simplify things, assume that these sources provide binary evidence—i.e.,
subsets of W that (may) contain the actual world. There are three assumptions about the
agent’s source of evidence:

1. Sources may or may not be reliable: a piece of evidence (i.e., a subset of worlds)
need not contain the actual world. Also, the agent does not know which evidence
is reliable.

2. The evidence gathered from different sources (or even the same source) may be
jointly inconsistent. Thus, the intersection of all the gathered evidence may be
empty.

3. Despite the fact that sources may not be reliable or may be jointly inconsistent, they
are all the agent has for forming beliefs. 17

The evidential state of the agent is the set of all propositions (i.e., subsets of W) identified
by the agent’s sources. In general, this could be any collection of subsets of W; but there
are some minimal constraints:

• no evidence set is empty (evidence per se is never contradictory); and

• the whole universe W is an evidence set (agents know their ‘space’).

An evidence model is a neighborhood structure satisfying these two constraints:

Definition 1.41 (Evidence Model) An evidence model is a tuple M = 〈W,E,V〉, where
W is a non-empty set of worlds; E : W → ℘(℘(W)) is a neighborhood function (which is
called an evidence function in this context); and V : At → ℘(W) is a valuation function.
Two constraints are imposted on the evidence sets: For each w ∈ W, ∅ < E(w) (E is
consistent) and W ∈ E(w) (E contains the unit). /

Note that it is not assumed that the collection of evidence sets E(w) is closed under
supersets. In addition, an evidence state may contain disjoint sets, whose combination
may lead (and should lead) to trouble. But note that, even though an agent may not
be able to consistently combine all of her evidence, there will be maximal collections of
admissible evidence that she can safely put together to form scenarios:

17Modeling sources and agents’ trust in the sources of evidence is also possible, but I will not pursue this
in this book.
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Definition 1.42 (Scenario) A w-scenario is a maximal collectionX ⊆ E(w) that has the fip
(i.e., the finite intersection property: for each finite subfamily {X1, . . . ,Xn} ⊆ X,

⋂
1≤i≤n Xi ,

∅). A collection is called a scenario if it is a w-scenario for some state w. /

The modal language used to reason about evidence models uses the modal operator
defined in Section 1.2.2. Let Lev(At) be the smallest set of formulas generated by the
following grammar:

p |¬ϕ | (ϕ ∧ ψ) | 〈 ]ϕ | [B]ϕ | [A]ϕ

where p ∈ At. Let 〈B〉 be defined as ¬[B]¬ and 〈A〉 be defined as ¬[A]¬. The intended
interpretation of 〈 ]ϕ is “the agent has evidence for ϕ” and [B]ϕ says that “the agent
believes that ϕ is true”. The universal modality ([A]ϕ: “ϕ is true in all states”) is included
for technical convenience. (Alternatively, [A]ϕ can be read as “the agent knows that ϕ is
true”.) Truth of formulas in Lev(At) is defined as follows:

Definition 1.43 (Truth for Evidence Models) Let M = 〈W,E,V〉 be an evidence model.
Truth of a formula ϕ ∈ Lev(At) is defined inductively as follows:

• M,w |= p iff w ∈ V(p) (p ∈ At).

• M,w |= ¬ϕ iffM,w 6|= ϕ.

• M,w |= ϕ ∧ ψ iffM,w |= ϕ andM,w |= ψ.

• M,w |= 〈 ]ϕ iff there exists X ∈ E(w) such that for all v ∈ X,M, v |= ϕ.

• M,w |= [B]ϕ iff for each w-scenario X and for all v ∈
⋂
X,M, v |= ϕ.

• M,w |= [A]ϕ iff for all v ∈W,M, v |= ϕ.

Recall that the truth set of ϕ is the set [[ϕ]]M = {w | M,w |= ϕ}. The standard logical
notions of satisfiability and validity are defined as usual (cf. Definition 1.16). /

According to the above definition, having evidence for ϕ need not imply that the agent
believes ϕ. In order to believe a proposition ϕ, the agent must consider all of her evidence
for or againstϕ. The idea is that each w-scenario represents a maximally consistent theory
based on (some of) the evidence collected at w.18 Note that the definition of truth of the
“evidence for” operator builds in monotonicity (recall item 1 in Exercise 7). That is, the
agent has evidence for ϕ at w provided that there is some evidence available at w that
implies ϕ.19

The class of evidence models described above is a very general model of an evidential
situation. However, there are additional assumptions that can be imposed on an evidence
model:

18Analogous ideas occur in semantics of conditionals (Kratzer, 1977; Veltman, 1976) and belief revision
(Gärdenfors, 1988; Rott, 2001).

19Thus, there is a distinction between having the evidence that ϕ (when the truth set of ϕ is in the agent’s set
of evidence) and having evidence for ϕ (when there is an evidence set that is contained in the truth set of ϕ).
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Definition 1.44 (Flat, Uniform Evidence Models) An evidence modelM is flat if every
scenario onM has non-empty intersection. An evidence modelM = 〈W,E,V〉 is uniform
if E is constant. In this case, it is more convenient to treat E as a set (of neighborhoods)
rather than as a function. /

Flatness and uniformity are natural assumptions that are expressible in the above
language.

Proposition 1.45 The formula 〈 ]ϕ→ 〈B〉ϕ is valid on the class of flat evidence models, but not
on the class of all evidence models.

Proof. Suppose thatM = 〈W,E,V〉 is a flat evidence model and that w ∈W. Suppose that
M,w |= 〈 ]ϕ. Then, there is an X ∈ E(w) such that X ⊆ [[ϕ]]M. Now, the singleton {X} can
be extended to a w-scenario XX. 20 In a flat structure,

⋂
XX , ∅; and so, in particular,

[[ϕ]]M ∩
⋂
XX , ∅. Hence,M,w |= 〈B〉ϕ. Thus,M |= 〈 ]ϕ→ 〈B〉ϕ.

To see that 〈 ]ϕ → 〈B〉ϕ is not valid in general, consider a uniform evidence model
M∞ = 〈W,E,V〉 with domain W = N and evidence sets E(w) = E = {[n,∞) | n ∈N} ∪ {W}
for each w ∈W. The valuation is unimportant, so we may let V(p) = ∅ for all p ∈ At. Clearly,
the only scenario onM∞ is all of E, but

⋂
E = ∅. Hence,M∞ |= [B]⊥—i.e.,M∞ 6|= 〈B〉>;

yetM∞ |= 〈 ]> (this formula is universally valid), and soM∞ 6|= 〈 ]> → 〈B〉>. qed

Exercise 24 1. Prove that (〈 ]ϕ ∧ [A]ψ)↔ 〈 ](ϕ ∧ [A]ψ) is valid on all evidence models.

2. Prove that [B]ϕ→ [A][B]ϕ and 〈 ]ϕ→ [A]〈 ]ϕ are valid on all uniform evidence models.

3. Is 〈 ]ϕ→ 〈 ]〈 ]ϕ valid on uniform evidence models? (Prove your answer.)

A complete list of axioms for the different classes of evidence models discussed in this
section can be found in (van Benthem et al., 2014).

1.4.5 Coalitional Logic

Coalitional logic (Pauly, 2001) uses neighborhood structures to describe the outcomes that
(groups of) players can force in a game-theoretic situation. Before discussing the logical
framework, I need to introduce a few game-theoretic concepts.

Definition 1.46 (Strategic Game Form) Suppose that I is a finite non-empty set of players.
A strategic game form for I is a tuple 〈I, {Si}i∈I,O, o〉, where for each i ∈ I, Si is a non-empty
set (elements of which are called actions or strategies); O is a non-empty set (elements
of which are called outcomes); and o : Πi∈ISi → O is a function assigning an outcome to
each tuple of strategies. /

20The formal proof that any singleton can always be extended to a w-scenario uses Zorn’s Lemma. I assume
that the reader is familiar with Zorn’s Lemma and how to use it to prove statements of this form.
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Elements of S = Πi∈ISi are called strategy profiles. Given a strategy profile s ∈ S, let si
denote i’s component and s−i the profile of strategies from s for all players except i. These
definitions can be lifted to sets of players, called coalitions. So, a strategy profile for a
coalition C is a tuple of strategies for each player in C—i.e., an element of Πi∈CSi. Let
SC = Πi∈CSi denote the set of strategy profiles for C, and let C denote the complement of
C (i.e., C = I − C). Thus, sC denotes a profile of strategies, one for each player not in C.

Remark 1.47 (Regarding the Definition of a Strategic Game Form)

• A strategic game form can be turned into a game by adding payoffs to each possible
outcome (formally, the payoffs are represented by utility functions for each player
(i.e., for i ∈ I, ui : O→ R).

• Often, it is assumed that there is exactly one outcome for each profile, so that the set
O and Πi∈ISi can be identified. However, for the purposes of presenting the logical
framework in this section, it is more convenient to work in a more general setting
in which the outcome function o need not be 1-1 or even onto.

Example 1.48 The following game form will be used as a running example in this Section.
Let G0 = 〈{A,B}, {SA,SB},O, o〉 be a game in which SA = {s1, s2, s3}, SB = {t1, t2}, O =
{o1, o2, o3, o4} and the outcome function o can be read off from the following matrix:

A

B
t1 t2

s1 o1 o2

s2 o2 o3

s3 o4 o1

The logical system introduced below is intended to describe the outcomes of a game
that can be forced by a group of players. Consider the example of a strategic game form
given above. Player A acting alone cannot force the outcome of the game to be o1.
The best she can do is force the outcome to be one from the set {o1, o2} by choosing her
strategy s1. Similarly, player B cannot force the game to end in outcome o1. The best
he can do is force to the outcome to be one from the set {o1, o2, o4} by choosing strategy
t1. However, as a group, they can force the outcome to be o1 by choosing their part
of the profile s{A,B} = (s1, t1) (the outcome o1 can also be arrived at using the strategy
profile (s3, t2)). This suggests the following definition specifying the sets of outcomes that
different coalitions can force.
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Definition 1.49 (α-Effectivity Function) Suppose that G = 〈I, {Si}i∈I,O, o〉 is a strategic
game form. An α-effectivity function21 is a map EαG : ℘(I)→ ℘(℘(O)) defined as follows:
For all C ⊆ I, X ∈ EαG(C) iff there exists a strategy profile sC such that for all sC ∈ Πi∈I−CSi,
o(sC, sC) ∈ X. /

To illustrate, the α-effectivity function EαG0
for the game form G0, defined above, is

given below. Recall that if X is a collection of subsets of O, then Xmon is the smallest
collection of subsets of O that contains X and is closed under supersets.

EαG0
({A}) = ({{o1, o2}, {o2, o3}, {o1, o4}})mon

EαG0
({B}) = ({{o1, o2, o4}, {o1, o2, o3}})mon

EαG0
({A,B}) = ({o1}, {o2}, {o3}, {o4}})mon = ℘(O) − ∅

EαG0
(∅) = {{o1, o2, o3, o4}}.

Given any strategic game form G, there is an α-effectivity function EαG associated with G.
A natural question is: When, exactly, is a function of the form E : ℘(I) → ℘(℘(O)) for a
finite set I of players and a non-empty set of outcomes O the α-effectivity function of some
strategic game form G? Naturally, not all functions of the form E : ℘(I) → ℘(℘(O)) are
α-effectivity functions for some game form. Pauly (2001) identified five key properties
that characterize α-effectivity functions when there are finitely many outcomes.

1. (Liveness) For all C ⊆ I, ∅ < E(C).

2. (Safety) For all C ⊆ I, O ∈ E(C)

3. (I-maximality) For all X ⊆ O, if X ∈ E(I) then X < E(∅).

4. (Outcome-monotonicity) For all X ⊆ X′ ⊆ O, and C ⊆ I, if X ∈ E(C) then X′ ∈ E(C).

5. (Superadditivity) For all subsets X1,X2 of O and sets of agents C1,C2, if C1 ∩ C2 = ∅,
X1 ∈ E(C1) and X2 ∈ E(C2), then X1 ∩ X2 ∈ E(C1 ∪ C2).

Exercise 25 Let G = 〈I, {Si}i∈I,O, o〉 be a strategic game form and EαG the associated α-effectivity
functions.

1. Show that EαG satisfies all of the above properties. Note that α-effectivity functions satisfy
the above properties even if O is infinite.

2. Show that if E : ℘(I) → ℘(℘(O)) is a function that satisfies superadditivity, then the
non-monotonic core of E(∅) is either empty or a singleton.

21The term “α-effectivity” comes from the game theory literature (Abdou and Keiding, 1991; Peleg, 1998).
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In a recent paper, Goranko, Jamroga and Turrini (2013) identified the sixth condition
that is needed to characterize α-effectivity functions for all outcome sets O. Before stating
the condition, I will explain why the above five conditions alone do not characterize
α-effectivity functions. The first observation is that in any strategic game form, the empty
coalition can force only sets that contain all the possible outcomes in the game. The
most elegant way to state this observation uses the notion of the non-monotonic core (cf.
Definition 1.2).

Observation 1.50 Suppose that G = 〈I, {Si}i∈I,O, o〉 is a strategic game form and EαG is the
associated α-effectivity function. Then, the non-monotonic core of EαG(∅) = {range(o)}, where
range(o) = {x ∈ O | there is a s ∈ Πi∈ISi such that o(s) = x}.

The problem is that if E is a function satisfying the above five conditions, then it is
possible that the non-monotonic core of the sets that the empty coalition can force may be
empty. Of course, this can only happen when O is infinite. The following example from
Goranko et al. (2013) (proof of Proposition 4) shows that the above five conditions do not
single out all α-effectivity functions: Suppose that there is a single player i with O = N.
Consider the function E : ℘({i})→ ℘(℘(O)) defined as follows:

E({i}) = {X | X ⊆N is infinite};

E(∅) = {X | X ⊆N is cofinite (i.e., X is finite)}.

Since there is no minimal cofinite set, we have Enc(∅) = ∅. Given Observation 1.50,
this means that E , EαG for any strategic game form G. However, it is not hard to see
that E satisfies conditions 1-5. In order to characterize all α-effectivity functions, a sixth
condition is needed to rule out examples similar to the one discussed above.

6. (Empty Coalition) E(∅) is core complete (cf. Definition 1.4).

I can now state the characterization theorem for α-effectivity functions.

Theorem 1.51 (Pauly, 2001; Goranko et al., 2013) If E : ℘(I) → ℘(℘(O)) is a function that
satisfies the conditions 1-6 given above, then E = EαG for some strategic game form.

In the remainder of this Section, I will introduce a modal logic for reasoning about
coalitional powers in games (Pauly, 2001, 2002). Given a finite set of players, or agents,
I and a finite or infinite set of atomic propositions At, let Lcl(At) be the smallest set of
formulas generated by the following grammar:

p | ¬ϕ | (ϕ ∧ ψ) | [C]ϕ

where p ∈ At and C ⊆ I. The other Boolean connectives connectives are defined as usual.
The intended interpretation of [C]ϕ is that the players in C have a joint strategy to ensure
that ϕ is true.
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Neighborhood structures are used to give a semantics for this language. The set of
states W represents the possible outcomes of different strategic game forms. Each state in
the model is assigned a function satisfying the above six conditions.

Definition 1.52 (Coalitional Model) Suppose that I is a finite set of players. A coalitional
model for I is a tuple 〈W,E,V〉, where W is a non-empty set of states E : W → (℘(I) →
℘(℘(W))) is a function where for all w ∈ W, E(w) satisfies liveness, safety, I-maximality,
outcome-monotonicity, superadditivity, and empty coalition; and V : At → ℘(W) is a
valuation function. To simplify notation, I will write E(w,C) for E(w)(C). /

Given a coalitional model M, truth of the formulas from Lcl(At) is defined as in
Definition 1.15. I give the definition of truth only for the modal operators:

• M,w |= [C]ϕ iff [[ϕ]]M ∈ E(w,C).

As the reader is invited to check, the following formulas are valid on any coalitional
model:

(Liveness) ¬[C]⊥
(Safety) [C]>

(I −maximality) [I]ϕ→ ¬[∅]¬ϕ
(Monotonicity) [C](ϕ ∧ ψ)→ [C]ϕ ∧ [C]ψ

(Superadditivity) ([C1]ϕ1 ∧ [C2]ϕ2)→ [C1 ∪ C2](ϕ1 ∧ ϕ2)
provided that C1 ∩ C2 = ∅.

Each of the formulas corresponds22 to the five properties needed to characterize α-
effectivity functions. The sixth property (empty coalition) does not have a corresponding
modal axiom. Nonetheless, Pauly (2001, 2002) proved that these axioms are sound and
complete for the class of coalitional models. See Goranko et al. (2013) for a complete
discussion.

22I am using “correspondence” in the sense of modal correspondence theory, which is discussed in Section
2.5.
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Chapter2
Core Theory

The previous chapter established that neighborhood structures with the basic proposi-
tional modal language is an interesting and well-motivated logical framework. In this
chapter, I move away from questions of motivation to explore the logical theory of neigh-
borhood structures.

The main object of study is a neighborhood model 〈W,N,V〉 in which W is a non-
empty set; N assigns a collection of subsets of W to each state; and V assigns a subset
of W to each atomic proposition (see Definitions 1.14 and 1.12). In order to facilitate a
comparison with relational models, it is convenient to let N be a relation N ⊆ W × ℘(W)
(cf. Remark 1.13). Two different definitions of truth for the modal operator can be found
in the literature. In order to compare and contrast these two definitions, I introduced two
different modalities (here, I give the definition of truth treating N as a relation):

• M,w |= 〈 ]ϕ iff there is a X ⊆W such that w N X and X ⊆ [[ϕ]]M.

• M,w |= �ϕ iff there is a X ⊆W such that w N X and X = [[ϕ]]M.

These two modalities are equivalent when the neighborhoods are monotonic (i.e., so that
if w N X and X ⊆ Y, then w N Y; see the discussion in Section 1.2.2). It is clear from
this presentation that neighborhood models generalize the standard relational models
〈W,R,V〉,where R ⊆W×W for the basic modal language (cf. Appendix A). Indeed, much
of the mathematical theory of modal logic with respect to relational structures can be
adapted to the more general setting involving neighborhood structures. In particular,
there is a well-behaved notion of structural equivalence between neighborhood models
matching the expressivity of the basic modal language (Section 2.1); there is a well-
developed proof theory for weak systems of modal logic (Sections 2.3 and 2.4.3); the
canonical model method for proving axiomatic completeness can be adapted to the more
general setting (Section 2.3.1); there is a generalization of frame correspondence theory
linking properties of the neighborhood relation and valid formulas (Section 2.5); the
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satisfiability problem for non-normal modal logics is decidable (Section 2.4.1); and there
is a standard translation into first-order logic (Section 2.6.3).

However, there are some important differences between neighborhood semantics and
relational semantics for modal logic. Two of the most striking properties are that the
satisfiability problem for many non-normal modal logics is NP-complete as opposed
to PSPACE-complete (Section 2.4.2), and that there are consistent normal modal logics
that are incomplete with respect to relational semantics but complete with respect to
neighborhood semantics (Section 2.3.2). Finally, an important theme in this chapter is
the relationship between neighborhood models and other semantics for the basic modal
language (Section 2.2).

2.1 Expressive Power and Invariance

Once a language and semantics are defined, the first steps towards a model theory is to
identify an appropriate notion of structural equivalence between models matching the ex-
pressivity of the language. For example, the appropriate notion of structural equivalence
for first-order logic is an isomorphism (Enderton, 2001, Chapter 2). For the basic modal
language L, the appropriate notion of structural equivalence between relational models
(Definition A.1) is a bisimulation (Definition A.12). In this section, I show that there is a
natural notion of a bisimulation between neighborhood models.

I start with the definition of modal equivalence. Suppose that M is a neighborhood
model. I write dom(M) for the domain of M—i.e., the set of states in M. A pair M,w
with w ∈ dom(M) is called a pointed model. For each pointed modelM,w, let

ThL(M,w) = {ϕ ∈ L | M,w |= ϕ}.

The set of formulas ThL(M,w) is called the theory of M,w—i.e., the set of all modal
formulas true at w inM. If ThL(M,w) = ThL(M′,w′), then the two situationsM,w and
M
′,w′ are indistinguishable from the point of view of the modal language L.

Definition 2.1 (L-Equivalence) Suppose thatM,w andM′,w′ are two pointed neighbor-
hood models andL is a modal language. We say thatM,w andM′,w′ areL-equivalent,
denoted M,w ≡L M′,w′, when ThL(M,w) = ThL(M′,w′). If L is the basic modal lan-
guage (Definition 1.9) andM,w ≡LM′,w′, then we say thatM,w andM′,w′ are modally
equivalent. /

Exercise 26 Use Exercise 7 part 2 to show that for all monotonic pointed modelsM,w andM′,w′

and the language Lmon from Section 1.2.2,M,w ≡LM′,w′ iffM,w ≡Lmon M
′,w′.

There is a natural notion of bisimulation between monotonic neighborhood models. In
order to facilitate a comparison with the definition of a bisimulation on relational models,
I state the following definition treating the neighborhood functions as relations.
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Definition 2.2 (Monotonic Bisimulation) Suppose thatM = 〈W,N,V〉 andM′ = 〈W′,N′,V′〉
are two monotonic neighborhood models. A relation Z ⊆ W ×W′ is a monotonic bisim-
ulation provided that, whenever wZw′:

Atomic harmony: for each p ∈ At, w ∈ V(p) iff w′ ∈ V′(p).

Zig: If w N X, then there is an X′ ⊆W′ such that w′ N′ X′ and ∀x′ ∈ X′, ∃x ∈ X such
that x Z x′.

Zag: If w′ N′ X′, then there is an X ⊆ W such that w N X and ∀x ∈ X, ∃x′ ∈ X′ such
that x Z x′.

Write M,w ↔ M′,w′ when there is a monotonic bisimulation Z ⊆ dom(M) × dom(M′)
such that w Z w′. /

A simple, but instructive, induction on the structure formulas shows that monotonic
bisimulations preserve truth over models:

Proposition 2.3 Suppose that Z is a monotonic bisimulation between two monotonic models
M = 〈W,N,V〉 andM′ = 〈W′,N′,V′〉. Then, for all ϕ ∈ L, for all w ∈ W, w′ ∈ W′, if wZw′,
thenM,w |= ϕ iffM′,w′ |= ϕ. That is,M,w↔M′,w′ implies thatM,w ≡LM′,w′.

It is well known that (relational) bisimulations (Definition A.12) completely characterize
modal equivalence on certain classes of relational models. For instance, for all image-finite
relational models (relational models such that for all w ∈W the set of states accessible from
w is finite), two states are modally equivalent iff the states are bisimilar. An analogous
result holds on monotonic neighborhood models. Before stating this result, it is conve-
nient to restrict the definition of a monotonic bisimulation to non-monotonic core of the
neighborhood models (Definition 1.2). More formally, a monotonic core bisimulation is
just like a monotonic bisimulation, except that the zig and zag clauses are restricted to the
non-monotonic core of the neighborhood functions. For instance, the zig-condition of a
monotonic core bisimulation is:

Zignc: If X1 ∈ Nnc
1 (w1), then there is an X2 ⊆W2 such that X2 ∈ Nnc

2 (w2) and ∀x2 ∈ X2,
∃x1 ∈ X1 such that x1 Z x2.

A key observation is that on core-complete monotonic models, every monotonic core
bisimulation is a monotonic bisimulation, and vice versa.

Proposition 2.4 Suppose thatM1 andM2 are core-complete monotonic neighborhood models.
Then, Z is a monotonic bisimulation betweenM1 andM2 iff Z is a monotonic core bisimulation.

Exercise 27 Prove Proposition 2.4.
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I can now define a class of models for which there is a perfect match between bisimilarity
and modal equivalence.

Definition 2.5 (Locally Core-Finite) A neighborhood model M = 〈W,N,V〉 is locally
core-finite provided thatM is core-complete and for each w ∈W, Nnc(w) is finite, and for
all X ∈ Nnc(w), X is finite. /

Obviously, any model with finitely many states is locally core-finite. However, a model
with infinitely many states can still be locally core-finite. I first prove that there is a perfect
match between bisimularity and modal equivalence on finite monotonic neighborhood
models.

Theorem 2.6 Suppose thatM = 〈W,N,V〉 andM′ = 〈W′,N′,V′〉 are finite monotonic mod-
els (i.e., W and W′ are finite sets). Then, for all w ∈ W, w′ ∈ W′, M,w ≡L M′,w′ iff
M,w↔M′,w′.

Proof. The right-to-left direction is Proposition 2.3 (the result holds for all monotonic
neighborhood models). For the left-to-right direction, suppose that M = 〈W,N,V〉 and
M
′ = 〈W′,N′,V′〉 are monotonic locally core-finite models. We show that modal equiva-

lence ≡L is a monotonic bisimulation (to simplify the notation, write ≡ instead of ≡L).
Suppose that X ∈ N(w). We must show that there exists X′ ∈ N′(w′) such that for

all x′ ∈ X′, there exists x ∈ X such that x ≡ x′. Suppose not. Since both models are
finite, we have N′(w′) = {X′1, . . . ,X

′

k} and X = {x1, . . . , xm}. Thus, the assumption is that
for each i = 1, . . . , k, there exists x′i ∈ X′i such that (∗) for all x j ∈ X, x j . x′i . Fix a set of
elements x′i ∈ X′i for i = 1, . . . , k satisfying (∗). This means that for each i = 1, . . . , k, for
each j = 1, . . . ,m, there is a formula ϕi j such thatM, x j |= ϕi j, butM′, x′i 6|= ϕi j. Now, we
haveM, x j |=

∧
i=1,...,k ϕi j; and so,

X ⊆ [[
∨

j=1,...,m

∧
i=1,...,k

ϕi j]]M

Let ϕ :=
∨

j=1,...,m
∧

i=1,...,k ϕi j. Then, M,w |= �ϕ. Since M,w ≡ M′,w′, we have
M
′,w′ |= �ϕ. However, this is a contradiction, since there is no i = 1, . . . , k such that

X′i ⊆ [[ϕ]]M′ . adsaf sadfasdff fsa qed

Exercise 28 Use Theorem 2.6 and Proposition 2.4 to prove that monotonic bisimulations charac-
terize modal expressivity on locally core-finite monotonic neighborhood models:

Theorem 2.7 Suppose that M = 〈W,N,V〉 and M′ = 〈W′,N′,V′〉 are monotonic, locally
core-finite models. Then, for all w ∈W, w′ ∈W′,M,w ≡LM′,w′ iffM,w↔M′,w′.

Theorem 2.7 shows that monotonic bisimulations capture modal expressivity on lo-
cally core-finite monotonic neighborhood models. 1 Interestingly, the above notion of a
bisimulation applies only when the models are monotonic.

1This result can be generalized to the class of modally saturated neighborhood models (Hansen, 2003;
Hansen et al., 2009).
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Example 2.8 (Monotonic Bisimulations on Arbitrary Neighborhood Models) Consider
the relation Z pictured below between the domains of two neighborhood modelsM and
M
′, the first of which is not monotonic.

w1

{w1}

w2

M

V(p) = {w1,w2}

v1

{v1}

M
′

V′(p) = {v1}

Z

As the reader is invited to check, the dashed line satisfies all the conditions in Definition
2.2. That is, Z is a monotonic bisimulation. However,M,w1 6|= �p andM′, v1 |= �p.

Thus, if the neighborhood models are not closed under supersets, then monotonic bisim-
ulations do not necessarily preserve the truth of modal formulas.

Exercise 29 Prove that monotonic bisimulations preserves the truth of the modal language Lmon

on neighborhood models even if they are not monotonic. This suggests that it is smoother to develop
a model theory for neighborhood models using the language Lmon (cf. Hansen, 2003).

The above example raises a question: What is the right notion of equivalence between
arbitrary neighborhood models? A complete answer to this question is discussed in
(Hansen et al., 2009). The main idea is to use bounded morphisms2.

Definition 2.9 (Bounded Morphism) Let M1 = 〈W1,N1,V1〉 and M2 = 〈W2,N2,V2〉 be
two neighborhood models. If f : W1 →W2 and X ⊆W2, then let f−1(X) = {w ∈W1 | f (w) ∈
X} be the inverse image of X. A function f : W1 →W2 is a bounded morphism if

1. for all p ∈ At, w ∈ V1(p) iff f (w) ∈ V2(p); and

2. for all X ⊆W′, f−1(X) ∈ N1(w) iff X ∈ N2( f (w)). /

Bounded morphisms preserve the truth of the basic modal language.

Proposition 2.10 Suppose that M = 〈W,N,V〉 and M′ = 〈W′,N′,V′〉 are two neighborhood
models, and f : W → W′ is a bounded morphism. Then, for all ϕ ∈ L, M,w |= ϕ iff
M
′, f (w) |= ϕ.

2The analogue of a bounded morphism for relational models is a p-morphism (Blackburn et al., 2001,
Section 2.1).
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Proof. The proof is by induction on the structure of ϕ. The argument for the base case
and Boolean connectives is as usual. We only give the argument for the modal operator.
Suppose that ϕ is of the form �ψ.

The induction hypothesis is that for all w ∈W,M,w |= ϕ iffM′, f (w) |= ϕ. This means
that f−1([[ϕ]]M′) = [[ϕ]]M1 (where f−1(X) = {w | f (w) ∈ X} is the inverse image of X). Then,

M,w |= �ψ iff [[ψ]]M ∈ N(w) (definition of truth)

iff f−1([[ψ]]M′) = [[ψ]]M ∈ N(w) (induction hypothesis)

iff [[ψ]]M′ ∈ N′( f (w)) (definition of bounded morphism)

iff M
′, f (w) |= �ψ (definition of truth)

ads qed

Exercise 30 What is the relationship between the Rudin-Keisler ordering discussed in Section
1.4.2 and bounded morphisms? For further comparisons between the Rudin-Keisler ordering and
monotonic bisimulations, consult, Daniëls (2011).

Remark 2.11 (Bounded Morphisms vs. Monotonic Bisimulations) Note that the rela-
tion between the models in Example 2.8 is actually a function from W′ to W (strictly
speaking, the converse of the relation Z is the function). Let f : W′ → W be the function
where f (v1) = w1. It is instructive to see why this function is not a bounded morphism
from M′ to M. The second condition of Definition 2.9 requires that for all X ⊆ W′,
f−1(X) ∈ N(w) iff X ∈ N′( f (w)). Let X = {w1,w2}. Then, X < N′( f (v1)). However,
f−1(X) = {w1} ∈ N(w1). Thus, f is not a bounded morphism. Note, also, that Z is not
a bounded morphism from from M to M′ since a bounded morphism must be a total
function.

I start with an illustrative example. Consider the following two neighborhood models:
M = 〈W,N,V〉 and M′ = 〈W′,N′,V′〉. In the first model, W = {w1,w2,w3}, N(w1) =
N(w2) = {w2} and N(w3) = ∅. In the second model, W′ = {v} and N(v) = ∅. In both models,
all propositional variables are false at all states. The models are pictured below. Note that
w1, w2 and v are modally equivalent. At all three states, all formulas of the form �ϕ are
false and all formulas of the form ^ϕ are true. Since N′(v) = ∅, but N(w1) = N(w2) , ∅,
there is no monotonic bisimulation between M and M′. Rather than trying to find a
relationship between the two models, the idea is to show that both models can “live”
inside a third model in such a way that modally equivalent states can be identified. For
example, letN = 〈W′′,N′′,V′′〉 be a neighborhood model with W′′ = {s1, s2}, N′′(s1) = {∅},
N′′(s2) = ∅, and for all atomic propositions p, V′′(p) = ∅. There are bounded morphisms
f : M → N and g : M′ → N such that f (w1) = f (w2) = g(v). The models and bounded
morphisms are pictured below:
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w2w1 w3

{w2} ∅

M

s1 s2

∅

N

v

M
′

Definition 2.12 (Behavioral Equivalence) Suppose thatM = 〈W,N,V〉 andM′ = 〈W′,N′,V′〉
are neighborhood models, and let w ∈ W and w′ ∈ W′. Then, M,w andM′,w′ are be-
haviorally equivalent iff there is a neighborhood modelN = 〈W′′,N′′,V′′〉 and bounded
morphisms f :M→N and g :M′ →N such that f (w) = g(w′). /

Proposition 2.13 Suppose that M = 〈W,N,V〉 and M′ = 〈W′,N′,V′〉 are two neighborhood
models. If states w ∈ W and w′ ∈ W′ are behaviorally equivalent, then for all ϕ ∈ L,M,w |= ϕ
iffM′,w′ |= ϕ.

The proof is an immediate consequence of Proposition 2.10.

Disjoint Unions An important feature of the modal language is that the definition of
truth is “local”. This feature is best exemplified by the fact that taking the disjoint union
of models does not affect the truth of formulas at states in each component.

Definition 2.14 (Disjoint Union) Let {〈Wi,Ni,Vi〉}i∈I be a collection of neighborhood mod-
els with disjoint sets of states. The disjoint union is the model ]iMi = 〈W,N,V〉, where
W = ∪i∈IWi; for all p ∈ At, V(p) = ∪i∈IVi(p); and

For all X ⊆
⋃

i∈I Wi, X ∈ N(w) iff X ∩Wi ∈ Ni(w). /

Proposition 2.15 Suppose that for all i ∈ I,Mi = 〈Wi,Ni,Vi〉. Then, for each i ∈ I and w ∈Wi,
for all ϕ ∈ L,Mi,w |= ϕ iff ]iMi,w |= ϕ.

The above proposition can be directly proved by an induction on the structure of formulas
in L. Alternatively, one can show that the natural embedding of each model into the
disjoint union is a bounded morphism.

Exercise 31 Suppose that {Mi = 〈Wi,Ni,Vi〉}i∈I is a collection of neighborhood models with
disjoint sets of states and that ]iMi = 〈W,N,V〉 is the disjoint union of the models. Prove that
for each i ∈ I and w ∈ Wi, for all the natural embedding of each modelMi into the disjoint union
]iMi (the 1-1 function that embeds each Wi into

⋃
i Wi) is a bounded morphism.
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Comparing Different Classes of Models An important theme in this book is to compare
and contrast neighborhood models with alternative models for the basic modal language.
Often, the goal is to show that certain classes of neighborhood models are modally equiv-
alent to some other class of models. In order to express this more formally, I need some
notation. Suppose that M is a class of models (such as relational models), and that pM is
the resulting class of pointed models—i.e., pairsM,w whereM is a model from M and
w is a state fromM. Each class of models M comes with a definition of truth for the basic
modal languageL. Formally, “truth” for the modal languageL is a relation, denoted |=M,
between pointed models from pM and formulas ϕ ∈ L (writeM,w |= ϕ when ϕ is true at
w inM). The definition of modal equivalence between neighborhood models (Definition
2.1) can be generalized to this more general setting.

Definition 2.16 (Modal Equivalence between Classes of Models) Suppose that L is a
modal language, and M and M′ are two classes of models for L. LetM,w be a pointed
models from pM andM′,w′ be a pointed model from pM′. Say thatM,w isL-equivalent
to M′,w′, denoted M,w ≡L M′,w′, provided that ThL(M,w) = {ϕ | M,w |=M ϕ} =
{ϕ | M′,w |=M′ ϕ} = ThL(M′,w′). If L is the basic modal language, then we say thatM,w
andM,w′ are modally equivalent.

A class of models M isL-equivalent to a class of models M′ provided for each pointed
modelM,w from pM, there exists a pointed modelM′,w′ from pM′ such thatM,w ≡L
M
′,w′, and vice versa. /

Typically, demonstrating that M and M′ are modally equivalent involves showing how to
transform models from M into models from M′ and, conversely, how to transform models
from M′ into models from M. For instance, the following theorem is a direct consequence
of Proposition 17 from Section 1.4.1.

Theorem 2.17 The class T = {MT
|M

T is a topological model } is modally equivalent to the class
MS4 = {M | M is an S4 neighborhood model}.

2.2 Alternative Semantics for Non-Normal Modal Logics

Neighborhood models are not the only semantics for the basic modal language. Indeed,
depending on the intended interpretation of the modalities, neighborhood models may
not always be the best choice of semantics for weak modal logics (cf. the discussion of
logics of ability in Section 1.3). It is important to understand the relationship between
neighborhood models and alternative semantics for the basic modal language. To keep
the discussion manageable, in this section, I focus on variations of relational models (Def-
inition A.1). Consult Venema (2007) and Chellas (1980, Exercises 7.11, 7.42-43, and 8.33)
for discussions of algebraic models. There are also coalgebraic models for the basic modal
language (Kupke and Pattinson, 2011) that generalize neighborhood models (Hansen and
Kupke, 2004; Hansen et al., 2009; Venema, 2007).
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2.2.1 Relational Models

Let R be a relation on a non-empty set W (i.e., R ⊆ W × W). For each w ∈ W, let
R(w) = {v | wRv}, and for each X ⊆ W, let R(X) = {w | ∃v ∈ X such that wRv}. So, R(w) is
the set of states that w can “see” via the relation R, and R(X) is the set of states that can
“see” some element of X (via the relation R).

Definition 2.18 (R-Necessity) Let R be a relation on a non-empty set W and w ∈W. A set
X ⊆W is R-necessary at w if R(w) ⊆ X. LetNR

w be the set of sets that are R-necessary at w
(we simply writeNw if R is clear from the context). That is,NR

w = {X | R(w) ⊆ X}. /

The following Lemma shows that the collection of R-necessary sets for some relation R
have very nice algebraic properties.

Lemma 2.19 Let R be a relation on W. Then, for each w ∈W,Nw is augmented.

Exercise 32 Prove Lemma 2.19.

Furthermore, properties of R are reflected in this collection of sets.

Observation 2.20 Let W be a set and R ⊆W ×W.

1. If R is reflexive, then for each w ∈W, w ∈ ∩Nw

2. If R is transitive, then for each w ∈W, if X ∈ Nw, then {v | X ∈ Nv} ∈ Nw.

Proof. Suppose that R is reflexive. Let w ∈W be an arbitrary state. Suppose that X ∈ Nw.
Then, since R is reflexive, wRw and, hence, w ∈ R→(w). Therefore by the definition ofNw,
w ∈ X. Since X was an arbitrary element ofNw, w ∈ X for each X ∈ Nw. Hence, w ∈ ∩Nw.

Suppose that R is transitive. Let w ∈ W be an arbitrary state. Suppose that X ∈ Nw.
We must show {v | X ∈ Nv} ∈ Nw. That is, we must show R→(w) ⊆ {v | X ∈ Nv}. Let
x ∈ R→(w). Then wRx. To complete the proof, we need only show that X ∈ Nx. That is,
we must show R→(x) ⊆ X. Since R is transitive, R→(x) ⊆ R→(w) (why?). Hence, since
R→(w) ⊆ X, R→(x) ⊆ X. qed

Exercise 33 State and prove analogous results for the situations in which R is serial (for all
w ∈ W, there exists a v such that wRv), Euclidean (for all w, v,u ∈ W, if wRv and wRu then
vRu) and symmetric (for all w, v ∈W, if wRv, then vRw).

Recall that a relational frame F is a tuple 〈W,R〉, where W , ∅ and R ⊆W ×W; and a
relational model forL(At) based on F is a tuple 〈F,V〉where V : At→ ℘(W) is a proposi-
tional valuation function (cf. Definition A.1). Both relational models and neighborhood
models can be used to provide a semantics for the basic modal language (cf. Appendix
A). It should be clear that neighborhood models are more general than relational models
(that is, neighborhood models satisfy more sets of formulas than relational models). The
following Theorem identifies the class of neighborhood models that is modally equivalent
to the class of relational models.
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Theorem 2.21 The class K = {M | M is a relational model } is modally equivalent to the class
Maug = {M | M is an augmented neighborhood model}.

The proof of this Theorem starts with a definition of equivalence between neighborhood
and relational frames.

Definition 2.22 Let W be a nonempty set of states, 〈W,N〉 a neighborhood frame and
〈W,R〉 a relational frame. We say that 〈W,N〉 and 〈W,R〉 are point-wise equivalent
provided that for all X ⊆W, X ∈ N(w) iff X ∈ NR

w . /

Exercise 34 Prove that if a neighborhood frame F = 〈W,N〉 and a relational frame F = 〈W,R〉
are point-wise equivalent, then for any propositional valuation V : At → ℘(W), ifM = 〈F ,V〉
andM = 〈F,V〉, then for all w ∈W,M,w andM,w are modally equivalent.

Using Exercise 34, the proof of Theorem 2.21 is a simple consequence of the following
two Lemmas.

Lemma 2.23 Let 〈W,R〉 be a relational frame. Then, there is a modally equivalent augmented
neighborhood frame.

Proof. The proof is straightforward given Lemma 2.19: for each w ∈ W, let N(w) = NR
w

(where R is the relation under consideration). qed

Lemma 2.24 Let 〈W,N〉 be an augmented neighborhood frame. Then, there is a modally equivalent
relational frame.

Proof. Let 〈W,N〉 be a neighborhood frame. We must define a relation RN on W. Since
〈W,N〉 is augmented, for each w ∈ W, ∩N(w) ∈ N(w). For each w, v ∈ W, let wRNv iff
v ∈ ∩N(w). To show that 〈W,RN〉 and 〈W,N〉 are equivalent, we must show that for
each w ∈ W, NRN

w = N(w). Let w ∈ W and X ⊆ W. If X ∈ NRN
w , then RN(w) ⊆ X.

Since RN(w) = ∩N(w) and N contains its core, RN(w) ∈ N(w). Furthermore, since N is
supplemented and RN(w) = ∩N(w) ⊆ X, X ∈ N(w). Now, suppose that X ∈ N(w). Then,
clearly, ∩N(w) ⊆ X. Hence, X ∈ NRN

w . qed

Exercise 35 Suppose that Keq is the class of relational models M = 〈W,R,V〉, where R is an
equivalence relation. Find the class of neighborhood models that is modally equivalent to Keq.

2.2.2 Generalized Relational Models

The next class of models is intended to provide a natural semantics for so-called non-
adjunctive logics. These are modal logics that do not include the axiom scheme (C):
(�ϕ ∧ �ψ)→ �(ϕ ∧ ψ). Schotch and Jennings introduced a semantics for such logics in a
series of papers (Schotch and Jennings, 1980; Jennings and Schotch, 1981, 1980).
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Definition 2.25 (n-ary Relational Model) An n-ary relational model (where n ≥ 2) is
a tuple 〈W,R,V〉, where W is a non-empty set and R ⊆ Wn is an n-ary relation3, and
V : At→ ℘(W) is a valuation function. /

So, relational models (cf. Definition A.1) are 2-ary models. The definition of truth for the
basic modal language L(At) follows the usual pattern. Let Mn = 〈W,R,V〉 be an n-ary
relational model and w ∈ W. The Boolean connectives are defined as usual. The clauses
for the modal operators are:

• Mn,w |= �ϕ iff for all (w1, . . . ,wn−1) ∈Wn−1, if (w,w1, . . . ,wn−1) ∈ R, then there exists
i such that 1 ≤ i ≤ n andMn,wi |= ϕ.

• Mn,w |= ^ϕ iff there exists (w1, . . . ,wn−1) ∈Wn−1 such that (w,w1, . . . ,wn−1) ∈ R, and
for all i such that 1 ≤ i ≤ n, we haveMn,wi |= ϕ.

An n-ary frame is a pair 〈W,R〉, where R ⊆ Wn is an n-ary relation. The standard logical
notions of satisfiability and validity are defined as usual (cf. Definition 1.16).

Example 2.26 (A 3-ary Relational Model) LetM3 = 〈W,R,V〉 be a 3-ary relational model
for the modal language generated from the atomic propositions At = {p, q, r}, where
W = {w1,w2,w3,w4,w5,w6,w7}; R = {(w1,w2,w3), (w1,w4,w5), (w1,w6,w7)}; and V(p) =
{w2,w4,w6}, V(q) = {w3,w5,w7} and V(r) = {w2,w3,w7}. This model is depicted as follows:

w1
p, r

w2

q, r

w3 p, r

w4

q

w5

q, r

w7

p

w6

According to the above definition of truth for the modal operators on n-ary relational
models, we have:

• M3,w1 |= �p (andM3,w1 |= �¬p);

• M3,w1 |= �q (andM3,w1 |= �¬q); and

• M3,w1 6|= �(p ∧ q).

3I write Xn for the n-fold cross product of the set X. That is, Xn consists of all tuples 〈x1, . . . , xn〉 of length
n where each xi ∈ X.
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The above model shows that the axiom scheme (C) is not valid on the class of 3-ary
relational models. Consider, again, the model M3 given in Example 2.26. Note that
M3,w1 |= �r, so we haveM3

|= �p ∧ �q ∧ �r. While � is not “closed under conjunction”4,
a weaker conjunctive closure condition is satisfied: M3,w1 |= �((p ∧ r) ∨ (q ∧ r)). The
primary interest in n-ary relational models is that they can be used to study a hierarchy
of weaker conjunctive closure principles. For each n ≥ 2, define the following formula:

(Cn)
n∧

i=1

�ϕi → �
∨

1≤k,l≤n, k,l

(ϕk ∧ ϕl).

So, for example, C3 is the formula

(�ϕ1 ∧ �ϕ2 ∧ �ϕ3)→ �((ϕ1 ∧ ϕ2) ∨ (ϕ2 ∧ ϕ3) ∨ (ϕ1 ∧ ϕ3)).

Exercise 36 Prove that the formula C3 is valid on any 3-ary relational frame.

Allen (2005) showed that every finite n-ary relational structure is modally equivalent to a
finite monotonic neighborhood structure, and vice versa (cf. Arló-Costa, 2005).

Theorem 2.27 The class Kn = {Mn
| Mn is an n-ary relational model } is modally equivalent to

the class Mmon = {M | M is a non-trivial monotonic neighborhood model}

To illustrate, I give an example showing how to translate a neighborhood model into a
modally equivalent n-ary relational model.

Example 2.28 (Translating Neighborhood Models to n-ary Relational Models) Suppose
that M = 〈W,N,V〉 is a monotonic neighborhood model with W = {w, v}; N(w) =
{{w}, {v}, {w, v}} and N(v) = {{w, v}}; and V(p) = {w} and V(q) = {v}. Note that Nnc(w) =
{{w}, {v}} and Nnc(v) = {{w, v}}. The first step is to add copies of the states so that each
minimal neighborhood contains exactly two sets. To that end, letM′ = 〈W′,N′,V′〉 with
W′ = W ∪ {w′, v′}, where w′ is a copy of w and v′ is a copy of v. So, N′(v) = N′(v′) =
{{w, v}, {w′, v′}} and N′(w) = N′(w′) = {{w}, {v}}; and V′(p) = {w,w′} and V′(q) = {v, v′}. The
second step is to construct a 3-ary relational modelMN′ = 〈WN′ ,RN′ ,VN′

〉 in which

• WN′ = {w, v,w′, v′};

• RN′ = {(w,w, v), (v,w,w′), (v,w, v′), (v, v,w′), (v, v, v′)}; and

• VN′ = V′.

Exercise 37 Prove the following proposition:

4In fact, we haveM3,w1 6|= �(p ∧ q),M3,w1 6|= �(p ∧ r), andM3,w1 6|= �(q ∧ r).
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Proposition 2.29 Suppose thatM = 〈W,N,V〉 is a finite monotonic neighborhood model such
that for all w ∈W, N(w) , ∅. Then, there is an n-ary relational modelMN = 〈WN,RN,VN

〉 that
is modally equivalent toM.

The proof that every finite n-ary relational model can be transformed into a monotonic
neighborhood model is more involved. Consult Allen (2005) for the details.

2.2.3 Multi-Relational Models

Goble (2000) used models with a set of relations as a semantics for a deontic logic in
which there are possibly conflicting obligations arising from different normative sources
(cf., also, Governatori and Rotolo, 2005).

Definition 2.30 (Multi-Relational Model) Suppose that At is a set of atomic propositions.
A multi-relational model is a triple 〈W,R,V〉, where W is a non-empty set; R ⊆ ℘(W×W)
is a set of serial relations (i.e., for all R ∈ R, for all w ∈ W, there exists v ∈ W such that
w R v); and V : At→ ℘(W) is a valuation function. /

The definition of truth for the basic modal language L(At) follows the usual pattern.
Let M = 〈W,R,V〉 be a multi-relational model and w ∈ W. The Boolean connectives are
defined as usual. The clauses for the modal operators are:

• M,w |= �ϕ iff there exists R ∈ R such that for all v ∈W, if w R v, thenM, v |= ϕ.

• M,w |= ^ϕ iff for all R ∈ R there is a v ∈W such that w R v andM, v |= ϕ.

Note that, according to the above definition, the relations in a multi-relational model
〈W,R,V〉 are assumed to be serial. This means that for all states w ∈ W, for all R ∈ R, the
set R(w) = {v | w R v} is non-empty. This assumption can be dropped, but doing so will
lead to some complications. A state w ∈ W is said to be a dead-end state with respect
to a relation R provided that R(w) = ∅ (i.e., there are no states accessible from w). This
means that if w is a dead-end state for a relation R ∈ R in a multi-relational model M,
then M,w |= �⊥. When studying non-adjunctive logics, it is important to distinguish
between situations in which �ϕ ∧ �¬ϕ is true and situations in which �⊥ is true. Ruling
out dead-end states ensures that ¬�⊥ is valid.

2.2.4 Impossible Worlds

Impossible worlds were first introduced into modal logic by Saul Kripke (1965) to provide
a semantics for some historically important systems of modal logic weaker than K. 5

Impossible worlds can be used in a variety of ways to weaken systems of modal logic
(see Berto, 2013, for a discussion). I will briefly discuss how to use impossible worlds

5Note that Kripke called impossible worlds “non-normal”.
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to provide a semantics for regular modal logics. These are modal logics in which the
necessitation rule is not valid (equivalently, modal logics that do not contain �>).

Say that a world w is an impossible world in a model M if nothing is necessary (no
formulas of the form �ϕ are true atM,w) and everything is possible (all formulas of the
form^ϕ are true atM,w). The key idea is to distinguish between possible and impossible
worlds in a relational model.

Definition 2.31 (Relational models with impossible worlds) A tuple 〈W,WN,R,V〉 is a
relational model with impossible worlds, provided that W is a non-empty set of worlds;
WN ⊆W; R ⊆W ×W; and V : At→ ℘(W). /

Suppose thatM = 〈W,WN,R,V〉 is a relational model with impossible worlds. Truth
for the basic modal language is defined as usual, except for the modal clause:

• M,w |= �ϕ iff w ∈WN and for all v ∈W, if w R v, thenM, v |= ϕ.

Adding impossible worlds to relational models is an elegant way to invalidate the
necessitation rule (while keeping all other axioms and rules of normal modal logic intact).
Consider any atomic proposition p, and suppose that M = 〈W,WN,R,V〉 is a relational
model with impossible worlds consisting of worlds W = {w, v} and WN = {w} with R =
{(w, v)}. Since the interpretation of the Boolean connectives is as usual at both possible and
impossible worlds, we have that p ∨ ¬p is valid on any relational model with impossible
worlds (in particular, M |= p ∨ ¬p). However, since v < WN, we have M, v 6|= �(p ∨ ¬p).
Thus, we have M,w |= �(p ∨ ¬p); yet, since w R v, we have M,w 6|= ��(p ∨ ¬p). Thus,
(Nec) is not valid over the class of relational models with impossible worlds.

There is much more to say about impossible worlds and how they can be used to
model various non-normal modal logics. The interested reader is invited to consult Priest
(2001) and Berto (2013), and references therein, for a more extensive discussion.

Exercise 38 Suppose thatM = 〈W,WN,R,V〉 is a relational model with impossible worlds. Find
a neighborhood modelM that is modally equivalent toM.

2.3 The Landscape of Non-Normal Modal Logics

I argued in Section 1.3 that there is interest in studying so-called non-normal modal logics.
These are weak systems of modal logics in which one or more of the following formulas
and rules are not valid.

(Dual) �ϕ↔ ¬^¬ϕ
(M) �(ϕ ∧ ψ)→ (�ϕ ∧ �ψ)
(C) (�ϕ ∧ �ψ)→ �(ϕ ∧ ψ)
(K) �(ϕ→ ψ)→ (�ϕ→ �ψ)
(N) �>

(RM) From ϕ→ ψ, infer �ϕ→ �ψ
(Nec) From ϕ, infer �ϕ
(RE) From ϕ↔ ψ, infer �ϕ↔ �ψ
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There are two natural questions to ask about the above formulas and rules. First,
which of them are valid on all neighborhood models? Second, are all the formulas and
rules independent? That is, which of the axioms or rules can be derived from the others?

I start with the first question. There are neighborhood models that invalidate each of
(M), (C), (K), (N), (RM) and (Nec). Example 1.17 is a countermodel to an instance of (M)
(and also (RM)— see Lemma 2.39 below).

Observation 2.32 There are formulas ϕ and ψ such that (C), (�ϕ∧�ψ)→ �(ϕ∧ψ), and (K),
�(ϕ→ ψ)→ (�ϕ→ �ψ), are not valid on the class of all neighborhood frames.

Proof. For the first formula, consider the neighborhood modelM = 〈W,N,V〉 with W =
{w, v}, N(w) = {{w}, {v}}, N(v) = {∅} and V(p) = {w} and V(q) = {v}. Thus,M,w |= �p ∧ �q,
but since [[p ∧ q]]M = ∅ < N(w),M,w 6|= �(p ∧ q).

For the second formula, we construct the following neighborhood model: M =
〈W,N,V〉 with W = {w, v, s}, N(w) = {{w}, {w, v, s}}, V(p) = {w} and V(q) = {w, v}. Then,
[[p]]M = {w}, [[q]]M = {w, v} and [[p→ q]]M = (¬p ∨ q)M = {w, v, s}. Thus, we have
M,w |= �(p→ q) ∧ �p butM,w 6|= �q. qed

Exercise 39 Can you find a neighborhood model with a state in which all �-formulas are false,
but all ^-formulas are true? Is this possible with relational semantics?

So, which formulas are valid on all neighborhood frames? As noted above, Definition
1.15 ensures that � and ^ are duals. This gives the following validity:

Lemma 2.33 The schema (Dual), �ϕ↔ ¬^¬ϕ, is valid on any neighborhood frame.

Proof. Let M = 〈W,N,V〉 be any neighborhood model. Then, using the Definition of
truth, the above properties of truth sets, and basic set-theoretic reasoning, we have the
following equivalences for any w ∈W:

M,w |= �ϕ iff [[ϕ]]M ∈ N(w)
iff W − (W − [[ϕ]]M) ∈ N(w)
iff W − ([[¬ϕ]]M) ∈ N(w)
iff M,w 6|= ^¬ϕ

iff M,w |= ¬^¬ϕ

Thus, �ϕ↔ ¬^¬ϕ is valid. qed

In addition, the inference rule (RE) is valid on the class of neighborhood frames.

Lemma 2.34 On the class of all neighborhood frames, if ϕ↔ ψ is valid, then �ϕ↔ �ψ is valid.
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Proof. The simple (and instructive!) proof is left to the reader. qed

The proof that (Dual) and (RE) are the only axiom and rules (in addition to proposi-
tional logic) needed to axiomatize the class of all neighborhood structures can be found
in Section 2.3.1.

Let us now turn to the second question: Which axioms/rules can be derived from the
others? I assume that the reader is familiar with the basics of Hilbert-style axiomatizations
of modal logics. See Appendix A.3 for a brief introduction and Blackburn et al. (2001,
Section 1.6) for a more extensive discussion. Let (PC) denote any axiomatization of
propositional logic and (MP) denote the rule of Modus Ponens (from ϕ and ϕ→ ψ infer
ψ). The smallest (in the sense of the least number of consequences) logical system that
we study in this book is E:

• E is the smallest set of formulas containing all instances of (PC) and (Dual) and is
closed under the rules (RE) and (MP).

The other logical systems will be extensions of E. For example, the logic EC is the smallest
set of formulas containing all instances of (PC), (Dual) and (C), and is closed under the
rules (RE) and (MP). That is, EC extends the logic E by adding all instances of the axiom
scheme (C). This is also the case for EM, EN, ECM, EK and EMCN. The logic K is the
smallest set of formulas containing all instances of (PC), (Dual), (K), and the rules (Nec)
and (MP). Note the difference between K and EK. Let L be any of the above logics; `L ϕ
means that ϕ ∈ S, and, in such a case, ϕ is said to be a theorem of L. As usual, if `L ϕ,
then there is a deduction of ϕ in the logic L.

Definition 2.35 (Tautology) A modal formula ϕ is called a tautology if ϕ = (α)σ where σ
is a substitution, α is a formula of propositional logic and α is a tautology. /

For example, �p → (^(p ∧ q) → �p) is a tautology because a → (b → a) is a tautology in
the language of propositional logic and

(a→ (b→ a))σ = �p→ (^(p ∧ q)→ �p)

where σ(a) = �p and σ(b) = ^(p ∧ q).

Definition 2.36 (Deduction) Suppose that L is an extension of E. A deduction in L is a
finite sequence of formulas α1, . . . , αn where for each i = 1, . . . ,n either 1) αi is a tautology;
2) αi is an instance of the axioms of L; or 3) αi follows by Modus Ponens or the other rules
of L from earlier formulas. 6 /

It is useful to introduce some terminology to classify different systems of propositional
modal logic.

6For Modus Ponens this means that there is j, k < i such that αk is of the form α j → αi.

55



Neighborhood Semantics for Modal Logic Chapter 2, Section 2.3

Definition 2.37 (Classifying Modal Logics) A propositional modal logic L is called

• a normal modal logic provided that it contains all instances of propositional tau-
tologies, all instances of (K) and is closed under the rules (Nec) and (MP);

• a minimal modal logic (also called a classical modal logic7) provided that it contains
all instances of propositional tautologies, all instances of (Dual) and is closed under
the rules (RE) and (MP);

• a monotonic modal logic provided that it contains all instances of propositional
tautologies, all instances of (Dual) and all instances of (M) and is closed under the
rules (RE) and (MP);

• a regular modal logic provided that it contains all instances of propositional tau-
tologies, all instances of (Dual), all instances of (M), all instances of (C) and is closed
under the rules (RE) and (MP). /

So, K is a normal modal logic and E is a non-normal modal logic (this follows from
Observation 2.32). In fact, K is the smallest (in terms of the number of theorems) normal
modal logic; E is the smallest classical modal logic; EM is the smallest monotonic modal
logic; and EMC is the smallest regular modal logic (see Chellas, 1980, Chapter 8 for a full
discussion).

My first observation about the logics introduced above, is that one can prove a uniform
substitution theorem in E. Given formulas ϕ,ψ,ψ′ ∈ L, let ϕ[ψ/ψ′] be the formula ϕ but
replace some occurrences ofψwithψ′ (recall the definition of a substitution from Definition
1.11). For example, suppose that ϕ is the formula �(^p ∧ ��q) ∧ �p; ψ is the formula p;
and ψ′ is the formula �p. Then, ϕ[ψ/ψ′] can be any of the following

• �(^p ∧ ��q) ∧ �p

• �(^�p ∧ ��q) ∧ �p

• �(^p ∧ ��q) ∧ ��p

• �(^�p ∧ ��q) ∧ ��p

The uniform substitution theorem states that we can always replace logically equivalent
formulas.

Theorem 2.38 (Uniform Substitution) The following rule can be derived in E:
7This is the terminology found in Segerberg (1971) and Chellas (1980). However, this is a somewhat

unfortunate name. Starting with Fitch (1948), there is a line of research studying intuitionistic modal logics (see,
for instance, Artemov and Protopopescu (2016) for an interesting epistemic interpretation of intuitionistic
modal logic touching on some of the issues discussed in this book). These are modal logics that extend
intuitionistic propositional logics. In this literature, a “classical modal logic” is a modal logics that extends
classical propositional logic (as opposed to intuitionistic propositional logic). One may be interested in both
normal and non-normal modal logics that extend either classical or intuitionistic propositional logics.
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ψ↔ ψ′

ϕ↔ ϕ[ψ/ψ′]

Proof. Suppose that `E ψ ↔ ψ′. We must show that `E ϕ ↔ ϕ[ψ/ψ′]. First of all, note
that if ϕ and ψ are the same formula, then either ϕ[ψ/ψ′] is ϕ (when ψ is not replaced) or
ϕ[ψ/ψ′] is ψ′ (when ψ is replaced). In the first case, ϕ ↔ ϕ[ψ/ψ′] is the formula ϕ ↔ ϕ
and so trivially, `E ϕ↔ ϕ[ψ/ψ′]. In the second case, ϕ↔ ϕ[ψ/ψ′] is the formula ψ↔ ψ′,
which is derivable in E by assumption. Thus we may assume that ϕ and ψ are distinct
formulas.

The proof is by induction on ϕ. The base case and Boolean connectives are left as
an exercise for the reader. I demonstrate the modal operator. Suppose that ϕ is �γ
and `E ψ ↔ ϕ′. The induction hypothesis is `E γ ↔ γ[ψ/ψ′]. Using the (RE) rule,
`E �γ ↔ �(γ[ψ/ψ′]). Note that �(γ[ψ/ψ′]) is the same formula as �γ[ψ/ψ′]. Hence, we
have `E �γ↔ �γ[ψ/ψ′]. qed

The substitution theorem is a fundamental theorem of axiom systems, and will often
be implicitly used in the remainder of this book (without reference).

The next observation is that there are alternative characterizations of the logics EM
and EN using the rules (RM) and (Nec), respectively.

Lemma 2.39 The logic EM equals the logic E plus the rule (RM).

Proof. We first show that (RM) can be derived in EM.

1. ϕ→ ψ Assumption
2. ϕ↔ (ϕ ∧ ψ) From 1 using propositional logic
3. �ϕ↔ �(ϕ ∧ ψ) From 2 using (RE)
4. �(ϕ ∧ ψ)→ �ϕ ∧ �ψ Instance of (M)
5. �ϕ→ �ϕ ∧ �ψ From 3,4 using propositional logic
6. �ϕ→ �ψ From 5 using propositional logic

Thus, (RM) is a derived rule of EM. The proof that (M) is derivable in the logic E plus the
rule (RM) is left to the reader. qed

Exercise 40 Complete the proof of Lemma 2.39.

Lemma 2.40 The logic EN equals the logic E plus the rule (Nec).

Proof. It is easy to see that using (Nec), we can prove �>. To see that (Nec) is an
admissible rule in the logic EN, suppose that `EN ϕ. We must show that `EN �ϕ. Using
propositional reasoning, since `EN ϕ, we have `EN (> ↔ ϕ). Then, using the rule (RE),
`EN �> ↔ �ϕ. This means that `EN �> → �ϕ. Since `EN �>, by (MP), `EN �ϕ. qed

Given the above Lemmas, it is not hard to see that the logic EMCN is equal to the
logic K. The first step is to show that (K) is derivable in the logic EMC:
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Lemma 2.41 `EMC (K)

Proof. First of all, since EMC contains (M), the rule (RM) is derivable (see Lemma 2.39).

1. ((ϕ→ ψ) ∧ ϕ)→ ψ Propositional Tautology
2. �((ϕ→ ψ) ∧ ϕ)→ �ψ From 1 using (RM)
3. (�(ϕ→ ψ) ∧ �ϕ)→ �((ϕ→ ψ) ∧ ϕ) Instance of (C)
4. (�(ϕ→ ψ) ∧ �ϕ)→ �ψ From 2,3 using propositional logic
5. �(ϕ→ ψ)→ (�ϕ→ �ψ) From 4 using propositional logic

qed

Exercise 41 Prove that `K (M) and `K (C).

Combining Lemma 2.41 and Exercise 41, we have:

Corollary 2.42 The logic EMCN equals the logic K.

Notice that both of the deductions that you found to solve the above exercise used
the necessitation rule (or the axiom (N)). Using neighborhood structures, it can be shown
that all deductions of (M) and (C) in K must use the necessitation rule (or the axiom (N)
by Lemma 2.40). To show this, we must show that there is a neighborhood frame that
validates (K) but not (M) and (C).

Observation 2.43 The axiom schemes (M) and (C) are not derivable in EK.

Proof. Suppose thatF = 〈W,N〉 is a neighborhood frame with W = {w, v,u, z}, and N(w) =
N(v) = N(u) = N(z) = {{w, v}, {w,u}}. We first show that F |= �(ϕ→ ψ)→ (�ϕ→ �ψ) (the
axiom scheme (K) is valid on F ). Suppose that x ∈ W andM is any model based on F .
Assume thatM, x |= �(ϕ→ ψ) andM, x |= �ϕ. There are two cases:

1. [[ϕ]]M = {w, v}. Then, {u, z} ⊆ [[ϕ→ ψ]]M. Hence,M, x 6|= �(ϕ→ ψ). This contradicts
the first assumption.

2. [[ϕ]]M = {w,u}. Then, {v, z} ⊆ [[ϕ→ ψ]]M. Hence,M, x 6|= �(ϕ→ ψ). This contradicts
the first assumption.

Both cases lead to a contradiction. Thus, since it is not possible for �(ϕ→ ψ) and �ϕ both
to be true at a state in a model based on F , the formula �(ϕ→ ψ)→ (�ϕ→ �ψ) is valid
on F .

Next, we show that (C) and (M) are not valid on F . The same model works for both
formulas. LetM = 〈W,N,V〉 be a model based on F with V(p) = {w, v} and V(q) = {w,u}.

• We have [[p]]M = {w, v} and [[q]]M = {w,u} and [[p ∧ q]]M = {w}. M,w |= �p ∧ �q, but
M,w 6|= �(p ∧ q).
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• We have [[(p ∨ q) ∧ p]]M = {w, v} and [[p ∨ q]]M = {w, v,u}. Then,M,w |= �((p∨q)∧p);
however,M,w 6|= �(p ∨ q). Thus, �(ϕ ∧ ψ)→ �ϕ ∧ �ψ is not valid. qed

Exercise 42 1. Prove that `E ^> ↔ ¬�⊥ and `E �> ↔ ¬^⊥.

2. Prove that the following are theorems of any monotonic modal logic:

(a) �ψ→ �(ϕ→ ψ)

(b) �¬ϕ→ �(ϕ→ ψ)

(c) ^(ϕ→ ψ) ∨ �(ψ→ ϕ)

(d) ^(ϕ ∧ ψ)→ ^ϕ ∧^ψ

3. Prove that the rule
ϕ→ ψ

^ϕ→ ^ψ
is admissible in any monotonic modal logic. (A rule is

admissible in a logic if adding it does not change the set of theorems.)

4. Prove that the following are derivable in any regular modal logic:

(a) �(ϕ→ ψ)→ (^ϕ→ ^ψ)
(b) �(ϕ↔ ψ)→ (�ϕ↔ �ψ)
(c) (�ϕ ∧^ψ)→ ^(ϕ ∧ ψ)

Exercise 43 1. Prove that (�ϕ→ ^ϕ)→ ^> is derivable in a monotonic modal logic.

2. Find a monotonic neighborhood modelM with a state w such thatM,w 6|= ^> → (�p→
^p). (This shows that 0EM ^> → (�ϕ→ ^ϕ). Cf. Theorem 2.66)

3. Prove that ^> ↔ (�ϕ→ ^ϕ) is a theorem of every regular modal logic.

A Non-Normal Extension of K

I conclude this section with some general comments about the definition of (normal)
modal logics. Logics are defined to be sets of formulas (typically, sets of all instances of
some collection of axiom schemes) that are closed under certain inference rules. Thus,
the statement “the logic L1 is contained in the logic L2” means that all the formulas in L1
are in L2 (i.e., L1 ⊆ L2). From this point of view, it is a direct consequence of Definition
2.37 that if L is a normal modal logic, then L contains K. It is, perhaps, surprising to note
that the converse is not true: It is not the case that every logic that contains K is normal.
An example of such a logic was provided early on by McKinsey and Tarski (1944). I
will present this logic below following the discussion in Segerberg (1971, pgs. 171, 172).
This is a small digression that can easily be skipped by readers not already familiar with
relational semantics for modal logic (see Appendix A for the relevant definitions).

I start by defining a well-known normal modal logic. Let S4 be the smallest set of
formulas from L(At) that is closed under (MP) and the necessitation rule (Nec), and that
contains all propositional tautologies, all instances of (K), and all instances of the following
axiom schemes:
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(T) �ϕ→ ϕ and (4) �ϕ→ ��ϕ.

The logics that interest us in this section are built from the so-called McKinsey axiom:

(McK) �^ϕ→ ^�ϕ.

Consider the following two logics:

1. S4McK is the smallest set of formulas that contains all instances of (Dual), (K), (T),
(4) and (McK) and is closed under (MP) and (Nec).

2. L is the smallest set of formulas that contains all of S4 and all instances of the axiom
scheme (McK).

Clearly, S4McK is a normal modal logic. The logic L contains S4 (and, so, also contains
the logic K). The question is: are L and S4McK the same logic? I will argue that the two
logics are distinct. In particular,�(�^p→ ^�p) < L (of course,�(�^p→ ^�p) ∈ S4McK).
Thus, L is a non-normal modal logic that contains K. To see that �(�^p → ^�p) < L,
consider the relational frame (Definition A.1) F = 〈W,R〉, where W = {w1,w2,w3,w4}, and
R is the smallest reflexive relation containing {(w1,w2), (w1,w3), (w1,w4), (w3,w4), (w4,w3)}.
This frame can be depicted as follows:

pw1

p

w3

p

w2

p

w4

Consider the set of formulas that are true at w1 in any relational model based on the above
frame:

Lw1 = {ϕ |M,w1 |= ϕ whereM is a relational model based on F}.

The following two Claims establish the fact that �(�^p→ ^�p) < L.

Claim 2.44 L ⊆ Lw1

Proof. We must show that S4 ⊆ Lw1 , and that every instance of (McK) is contained in
Lw1 . The fact that S4 ⊆ Lw1 follows from the fact that the relation in F is reflexive and
transitive, and from the well-known result that S4 is sound and complete with respect to
the class of frames that are reflexive and transitive (Blackburn et al., 2001, Theorem 4.29).
To see that every instance of (McK) is contained in Lw1 , suppose that M is a relational
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model based on F and M,w1 |= �^ϕ. Then, for all v, if w1Rv, then M, v |= ^ϕ. In
particular, since w1Rw2, M,w2 |= ^ϕ. Thus, since w2 is the only world accessible from
w2, we must haveM,w2 |= ϕ. Furthermore,M,w2 |= �ϕ (this again follows from the fact
that w2 is the only world accessible from w2). But this means that M,w1 |= ^�ϕ. Thus,
M,w1 |= �^ϕ→ ^�ϕ. qed

Claim 2.45 �(�^p→ ^�p) < Lw1

Proof. Suppose that M = 〈W,R,V〉 is a relational model based on F with the valuation
V(p) = {w3}. Then, as the reader is invited to verify, M,w4 |= �^p, but M,w4 6|= ^�p.
This means thatM,w4 6|= �^p → ^�p, and soM,w1 6|= �(�^p → ^�p). Thus, �(�^p →
^�p) < Lw1 , as desired. qed

Remark 2.46 (Another Example) The example of a non-normal modal logic containing
K presented in this section is somewhat artificial. A better motivated example of a such a
logic is Solovay’s provability logic S (see Japaridze and de Jongh, 1998, for a discussion).
The normal modal logic GL is defined by adding the axiom scheme �(�ϕ→ ϕ)→ �ϕ to
K. It is well-known that `GL �ϕ→ ��ϕ. Solovay’s logic S is defined as follows: ϕ ∈ S iff
{�ψ1 → ψ1, . . . ,�ψk → ψk} `GL ϕ, for some ψ1, . . . , ψk. It can be shown that S contains K4,
but is not closed under the rule of necessitation (Japaridze and de Jongh, 1998, Section 2).
Thus, S is another example of a non-normal modal logic containing K.

2.3.1 Completeness

In this section, I show how to adapt the standard approach for proving completeness of
modal logics to prove completeness of non-normal modal logics with respect to neigh-
borhood semantics. I assume that the reader is familiar with basic soundness and com-
pleteness results in modal logic (with respect to relational frames). See Blackburn et al.
(2001, Chapter 4), for an overview. I start by reviewing some basic terminology.

Preliminaries

Recall the definition of a deduction for modal logic from (Definition A.25 and the subse-
quent discussion in Section 2.3).

Definition 2.47 (Deduction from assumptions) Suppose that Γ is a set of formulas from
L; L is a modal logic; and ϕ ∈ L. We write Γ `L ϕ if there is a finitely many formulas
α1, . . . , αn ∈ Γ such that `L (α1 ∧ · · · ∧ αn)→ ϕ. 8 /

8I am using the definition of a deduction from assumptions found in (Goldblatt, 1992a, pg. 17) and
(Blackburn et al., 2001, pg. 36). See Hakli and Negri (2011) for a discussion of the issues surrounding this
definition related to the deduction theorem and the proper use of inference rules.
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Suppose that F is a collection of neighborhood frames. A formula ϕ ∈ L is valid in F, or
F-valid, denoted |=F ϕ, when for each F ∈ F, F |= ϕ (Definition 1.16). Given a class of
frame F, let L(F) = {ϕ | for all F ∈ F,F |= ϕ} denote the set of formulas that are F-valid.

Definition 2.48 (Soundness) A logic L is sound with respect to F, provided that L ⊆ L(F).
That is, for each ϕ ∈ L, if `L ϕ, then ϕ is valid in F. /

The main goal is to show that there is a semantic consequence relation between sets of
formulas and formulas that is equivalent to the deduction relation.

Definition 2.49 (Semantic Consequence) Suppose that Γ is a set of formulas and F is a
class of neighborhood frames. A formula ϕ ∈ L is a semantic consequence with respect
to F of Γ, denoted Γ |=F ϕ, provided for each modelM = 〈W,N,V〉 based on a frame from
F (i.e., 〈W,N〉 ∈ F), for each w ∈W, ifM,w |= Γ, thenM,w |= ϕ. /

Remark 2.50 (Local and Global Consequence) The above definition of a semantic con-
sequence is a local consequence relation. It is important to distinguish this from a global
consequence: For a class of frames F, let Γ |=

g
F ϕ provided that for each F ∈ F, if F |= Γ,

thenF |= ϕ. These two notions of semantic consequence are not equivalent. For instance,
suppose that F is the class of frames that contain the unit (i.e., for all 〈W,N〉 ∈ F, for all
w ∈ W, W ∈ N(w)); then, {p} |=g

F �p but {p} 6|=F �p. See Blackburn et al. (2001, Section 1.5)
and Hakli and Negri (2011) for further discussion.

Definition 2.51 (Strong Completeness) A logic L is strongly complete with respect to a
class of frames F, when, for each Γ ⊆ L, Γ |=F ϕ implies Γ `L ϕ. /

Remark 2.52 (Weak Completeness) A special case of the above definition is when Γ = ∅.
A logic L is weakly complete with respect to a class of frames F, if |=F ϕ implies `L ϕ.
Obviously, if L is strongly complete, then L is weakly complete. However, the converse
is not true. There are modal logics that are weakly complete but not strongly complete.
An example of such a normal modal logic can be found in the Appendix (Observation
A.35). See, also, Section 3.3 for other examples of logics that are weakly complete but no
strongly complete (cf., also, Blackburn et al., 2001, Section 4.8).

Let L be any modal logic extending E. A set of formulas Γ is said to be L-inconsistent
if Γ `L ⊥, and L-consistent if it is not inconsistent.

Definition 2.53 (Maximally Consistent Set) A set of formulas Γ is called maximally con-
sistent provided that Γ is consistent and for all formulas ϕ ∈ L, either ϕ ∈ Γ or ¬ϕ ∈ Γ.
asdf asdf asdf /

Let ML be the set of L-maximally consistent sets of formulas. Given a formula ϕ ∈ L,
let |ϕ|L be the proof set of ϕ in L. Formally, |ϕ|L = {∆ | ∆ ∈ ML and ϕ ∈ ∆}. The first
observation is that proof sets share a number of properties in common with truth sets.
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Lemma 2.54 Let L be a logic and ϕ,ψ ∈ L. Then,

1. |ϕ ∧ ψ|L = |ϕ|L ∩ |ψ|L.

2. |¬ϕ|L = ML − |ϕ|L.

3. |ϕ ∨ ψ|L = |ϕ|L ∪ |ψ|L.

4. |ϕ|L ⊆ |ψ|L iff `L ϕ→ ψ.

5. |ϕ|L = |ψ|L iff `L ϕ↔ ψ.

6. For any maximally L-consistent set Γ, if ϕ ∈ Γ and ϕ→ ψ ∈ Γ, then ψ ∈ Γ.

7. For any maximally L-consistent set Γ, If `L ϕ, then ϕ ∈ Γ.

Exercise 44 Prove Lemma 2.54.

Another standard result is Lindenbaum’s Lemma. I leave the proof of Lindenbaum’s
Lemma as an exercise. 9

Lemma 2.55 (Lindenbaum’s Lemma) For any L-consistent set of formulas Γ, there exists a
maximally L-consistent set Γ′ such that Γ ⊆ Γ′.

Exercise 45 Prove Lindenbaum’s Lemma.

The following useful fact about proof sets demonstrates how Lindenbaum’s Lemma
can be used.

Lemma 2.56 For each ϕ ∈ L, ψ ∈
⋂
|ϕ|L iff `L ϕ→ ψ.

Proof. Suppose that `L ϕ → ψ. Then, for each maximally consistent set Γ, ϕ → ψ ∈ Γ.
Hence, since for each Γ ∈ |ϕ|L, ϕ ∈ Γ, we have ψ ∈ Γ. Thus, ϕ ∈ ∩|ϕ|L.

Suppose that ψ ∈ ∩|ϕ|L, but it is not the case that `L ϕ → ψ. Then, ¬(ϕ → ψ) is
L-consistent. Using Lindenbaum’s Lemma, there is a maximally consistent set Γ such that
¬(ϕ → ψ) ∈ Γ. Thus, ϕ,¬ψ ∈ Γ. Since ϕ ∈ Γ, Γ ∈ |ϕ|L. But then, ¬ψ ∈ Γ contradicts the
fact that ψ ∈ ∩|ϕ|L. qed

A straightforward corollary of this Lemma is the following useful fact:

Corollary 2.57 If ϕ ∈ Γ for all maximally L-consistent sets Γ, then `L ϕ.

9The proof is provided in the solution manual. Consult Chellas (1980) and Blackburn et al. (2001) for a
discussion of this proof and a more complete discussion of maximally consistent sets.

63



Neighborhood Semantics for Modal Logic Chapter 2, Section 2.3

Canonical Models

Suppose thatM = 〈W,N,V〉 is a neighborhood model and X ⊆W any subset. A set X ⊆W
is definable (with respect to a modal language L) provided that there is a formula ϕ ∈ L
such that [[ϕ]]M = X. Let DM be the set of all sets that are definable in M. Note that
since there are only countably many formulas in L, the set DM is countable (or finite if
W is finite). Thus, if ℘(W) is uncountable, thenDM , ℘(W). A subset X ⊆ ML is called a
proof set provided that there is some formula ϕ ∈ L such that X = |ϕ|L. Again, since the
modal languageL is countable, there are only countably many proof sets. However, if At
is countable, then ML is uncountable; and so, there are uncountably many subsets of ML.
Thus, it is not the case that every subset of ML is a proof set.

As usual, the states in a canonical model will be maximally consistent sets—i.e.,
elements of ML. A function NL : ML → ℘(℘(ML)) is a canonical neighborhood function
provided that for all ϕ ∈ L:

|ϕ|L ∈ NL(Γ) iff �ϕ ∈ Γ.

So, for each maximally consistent set Γ, NL(Γ) contains at least all the proof sets of
the necessary formulas from Γ. The first question is: Do any such functions actually exist?
That is, is it even possible to define a function satisfying the above condition? A problem
would arise if there were proof sets |ϕ|L and |ψ|L such that |ϕ|L = |ψ|L and a maximally
consistent set with �ϕ ∈ Γ but �ψ < Γ (and, hence, ¬�ψ ∈ Γ). If such a situation were
possible, then it would be impossible to satisfy the above condition. Fortunately, this
problematic situation is ruled out in any logic containing the rule RE.

Lemma 2.58 Suppose that L is a logic that contains the RE rule and that NL : ML → ℘(℘(ML))
is a function such that for each Γ ∈ ML, |ϕ|L ∈ NL(Γ) iff �ϕ ∈ Γ. Then, if |ϕ|L ∈ NL(Γ) and
|ϕ|L = |ψ|L, then �ψ ∈ Γ.

Proof. Let ϕ and ψ be two formulas such that |ϕ|L = |ψ|L, �ϕ ∈ Γ, and |ϕ|L ∈ NL(Γ). Since
|ϕ|L ∈ NL(Γ), �ϕ ∈ Γ. Also, by Lemma 2.54, since |ϕ|L = |ψ|L, `L ϕ ↔ ψ. Using the RE
rule, `L �ϕ↔ �ψ. Hence, �ϕ↔ �ψ ∈ Γ. Therefore, �ψ ∈ Γ. qed

The canonical valuation, VL : At → ℘(ML), is defined as follows. For each p ∈ At, let
VL(p) = |p|L = {Γ | Γ ∈ ML and p ∈ Γ}. Putting everything together gives us the following
definition:

Definition 2.59 (Canonical Neighborhood Model) Suppose thatM = 〈W,N,V〉 is a neigh-
borhood model. Then,M is canonical for L provided that:

1. W = ML;

2. for each Γ ∈W and each formula ϕ ∈ L, |ϕ|L ∈ N(Γ) iff �ϕ ∈ Γ; and

3. V = VL. /
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For example, letMmin
L = 〈ML,Nmin

L ,VL〉, where, for each Γ ∈ML, Nmin
L (Γ) = {|ϕ|L | �ϕ ∈ Γ}.

The model Mmin
L is easily seen to be canonical for L. Furthermore, it is the minimal

canonical for L in the sense that for each Γ, Nmin
L (Γ) is the smallest set satisfying property

2 from Definition 2.59. Let PL be the set of all proof sets of L (i.e., PL = {|ϕ|L | ϕ ∈ L}).
The largest canonical for L is the model Mmax

L = 〈ML,Nmax
L ,VL〉 with for each Γ ∈ ML,

Nmax
L (Γ) = Nmin

L (Γ) ∪ {X | X ⊆ML,X < PL}.

Lemma 2.60 (Truth Lemma) For any consistent logic L and any consistent formula ϕ, ifM is
canonical for L, then

[[ϕ]]M = |ϕ|L.

Proof. Suppose thatM = 〈W,N,V〉 is a canonical model for L. The proof is by induction
on the structure of ϕ ∈ L. The base case and the cases for the Boolean connectives are
as usual and left for the reader. I give the details only for the modal case. The induction
hypothesis is that [[ϕ]]M = |ϕ|L. We must show that [[�ϕ]]M = |�ϕ|L.

Γ ∈ [[�ϕ]]M iff [[ϕ]]M ∈ N(Γ) (Definition of truth)

iff |ϕ|L ∈ N(Γ) (induction hypothesis)

iff �ϕ ∈ Γ (item 2 of Definition 2.59)

iff Γ ∈ |�ϕ|L (definition of proof sets)

Thus, [[�ϕ]]M = |�ϕ|L, as desired. qed

Applications

Theorem 2.61 The logic E is sound and strongly complete with respect to the class of all neigh-
borhood frames.

Proof. Soundness is straightforward (and, in fact, already shown in earlier exercises). As
for strong completeness, I will show that every consistent set of formulas can be satisfied
in some model. Before proving this, I show that this fact implies strong completeness.
The proof is by contraposition. Suppose that it is not the case that Γ `L ϕ. Then, Γ ∪ {¬ϕ}
is consistent. (If Γ ∪ {¬ϕ} `L ⊥, then, by propositional reasoning, Γ `L ¬ϕ → ⊥. Hence,
Γ `L ϕ.) If Γ ∪ {¬ϕ} is jointly true at some state in a model, then Γ cannot semantically
entail ϕ. Thus, if Γ 0L ϕ, then Γ 6|=F ϕ (where F is the class of all neighborhood frames).

Let Γ be a consistent set of formulas. By Lindenbaum’s Lemma, there is a maximally
consistent set Γ′ such that Γ ⊆ Γ′. Consider the minimal canonical modelMmin

E . By the
Truth Lemma (Lemma 2.60),Mmin

L ,Γ′ |= Γ′. Thus, Γ is satisfiable at a state in the minimal
canonical model, as desired. qed

Notice that in the above proof, the choice to use the minimal canonical model for E was
somewhat arbitrary. It is easy to see that the proof would go through if I had usedMmax

E
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instead ofMmin
E . Indeed, any canonical model for E could have been used in the above

proof. The fact that there is a choice of canonical models will be useful when proving
completeness for logics extending E. The strategy for proving strong completeness for
other non-normal modal logics discussed in Section 2.3 is similar to the strategy for
proving strong completeness of some well-known normal modal logics, such as S4 or
S5. Given the above definition of a canonical model and truth lemma, all that remains
is to show that a the frame of a particular canonical model belongs to the class of frames
under consideration. This argument is called completeness-via-canonicity in (Blackburn
et al., 2001). For instance, consider the logic EC. It is not hard to see that C is sound for
the class of neighborhood frames that are closed under intersections (cf. Lemma 2.90). I
now show that EC is sound and strongly complete with respect to neighborhood frames
that are closed under intersections. The first step is to show that C is canonical10 for this
property.

Lemma 2.62 If L contains all instances of C, then Nmin
L is closed under finite intersections.

Proof. Suppose that L contains all instances of C. We must show that for all Γ ∈ ML,
Nmin

L (Γ) is closed under intersections. Suppose that X,Y ∈ Nmin
L (Γ). By the definition of

Nmin
L , X = |ϕ|L and Y = |ψ|L with �ϕ ∈ Γ and �ψ ∈ Γ. Hence, �ϕ∧�ψ ∈ Γ; and so, using C,
�(ϕ∧ψ) ∈ Γ. Thus, |ϕ∧ψ|L ∈ Nmin

L (Γ). Therefore, X∩Y = |ϕ|L ∩ |ψ|L = |ϕ∧ψ|L ∈ Nmin
L (Γ),

as desired. qed

Given the above proof, strong completeness is straightforward.

Theorem 2.63 The logic EC is sound and strongly complete with respect to the class of neigh-
borhood frames that are closed under intersections.

Proof. The proof proceeds as in Theorem 2.61, using Lemma 2.62 to argue that the
canonical frame for EC is closed under intersections. qed

Exercise 46 Prove that EN is sound and strongly complete with respect to neighborhood frames
that contain the unit.

The proof that EM is strongly complete with respect to neighborhood frames that are
closed under supersets is not as straightforward. Here, we need to make use of the fact
that there are a number of different canonical models. The main difficulty is that Nmin

EM is
not closed under supersets.

Observation 2.64 There is a maximally consistent set Γ such that Nmin
EM(Γ) is not closed under

supersets.

10See Blackburn et al. (2001), Chapter 4, for an extended discussion of canonical properties for relational
models.
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Proof. Let p be a propositional variable and let Γ be a maximally consistent set such
that �p ∈ Γ (such a set exists by Lindenbaum’s Lemma since �p is consistent). Then
|p|EM ∈ Nmin

EM(Γ). Let Y be any non-proof set that extends |p|EM (i.e., |p|EM ( Y). To see that
such a set exists, let Y′ be any non-proof set such that Y′ * |p|EM (such a set exists since
there are uncountably many subsets of MEM but only countably many proof sets, and p
is not a theorem of EM). Then, Y = Y′ ∪ |p|EM is not a proof set since, if Y = |ψ|EM for
some formula ψ, then Y′ = |ψ ∧ ¬p|EM (why?), which contradicts the fact that Y′ is not a
proof set. Clearly, Y < Nmin

EM(Γ) (why?). Then, we have X = |p|EC ∈ Nmin
EM(Γ), X ⊆ Y, but

Y < Nmin
EM(Γ). qed

However, this difficulty can be easily overcome by choosing a different, better-
behaved, canonical model. Recall from Section 1.1, that if F is any collection of subsets of
W, then F mon = {X | there is a Y ∈ F such that Y ⊆ X}. Given any modelM = 〈W,N,V〉,
let the supplementation ofM, denotedMmon, be the model 〈W,Nmon,V〉, where for each
w ∈ W, Nmon(w) = (N(w))mon. The key argument is that the supplementation of the
minimal canonical model is canonical for EM.

Lemma 2.65 Suppose thatM = (Mmin
EM)mon. Then,M is canonical for EM.

Proof. Suppose that M = 〈W,N,V〉, where W = MEM and for each Γ ∈ W, N(Γ) =
(Nmin

EM(Γ))mon, and V = VEM. Let Γ ∈W. We must show that for each formula ϕ ∈ L,

|ϕ|EM ∈ N(Γ) iff �ϕ ∈ Γ.

The right-to-left direction is trivial since for all Γ, Nmin
EM(Γ) ⊆ N(Γ). Suppose that |ϕ|EM ∈

N(Γ) = (Nmin
EM(Γ))mon. Then, there is some proof set |ψ|EM ∈ Nmin

EM(Γ) such that |ψ|EM ⊆ |ϕ|EM.
Since |ψ|EM ∈ Nmin

EM(Γ), we have �ψ ∈ Γ. Furthermore, since |ψ|EM ⊆ |ϕ|EM, by Lemma
2.54, `EM ψ → ϕ. Using the rule RM (which is admissible in EM), `EM �ψ → �ϕ. Thus,
�ψ→ �ϕ ∈ Γ. Therefore, �ϕ ∈ Γ, as desired. qed

Theorem 2.66 The logic EM is sound and strongly complete with respect to the class of monotonic
frames.

Proof. Left as an exercise for the reader. qed

Combining the proofs of Theorems 2.63 and 2.66 with Exercise 46 gives a characterization
of the smallest normal modal logic K.

Theorem 2.67 The logic K is sound and strongly complete with respect to the class of filters.

As I explained in Section 1.1, not all filters are augmented. Since K is sound and
complete with respect to the class of all relational frames (cf. Appendix A), and each
relational frame corresponds to an augmented neighborhood frame (cf. Section 2.2.1),
there is another characterization of K:
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Exercise 47 Prove that K is sound and strongly complete with respect to the class of augmented
frames.

Exercise 48 Prove that S4 (see Section 2.3 for a definition) is sound and strongly complete with
respect to the class of S4 neighborhood frames (Definition 1.33).

2.3.2 Incompleteness and General Frames

In Section 2.2.1, we saw that the class of relational frames is modally equivalent to the
class of augmented neighborhood frames. This means that if a modal logic is complete
with respect to a class of relational frames, then it must be complete with respect to
the corresponding class of neighborhood frames (this follows from the fact that every
relational model can be turned into a modally equivalent neighborhood model). Recall
that a logic L is neighborhood complete (resp. Kripke complete) provided that there
is a class of neighborhood frames F (resp. relational frames) such that L = L(F) = {ϕ ∈
L | F |= ϕ for all F ∈ F}. Otherwise, the logic is said to be neighborhood incomplete
(resp. Kripke incomplete).

It is well known that there are Kripke incomplete modal logics—i.e., modal logics
that are not the logic of any class for relational frames. Thomason (1972) provided the
first consistent modal logic that is incomplete with respect to relational frames (i.e., a
Kripke incomplete modal logic). See Fine (1974), Thomason (1974), van Benthem (1978),
Shehtman (1977), Boolos and Sambin (1985), and Benton (2002) for other examples of
Kripke incomplete modal logics. Gerson (1975b) proved that the Kripke incomplete
modal logics from (Thomason, 1974) and (Fine, 1974) are also incomplete with respect to
neighborhood frames (cf. also Shehtman (1980) for another example a logic incomplete
with respect to neighborhood frames). Now, if a logic is non-normal, then, since there
are no relational frames validating all the formulas in the logic, the logic must be Kripke
incomplete. However, the situation is much more interesting. There are consistent normal
modal logics that are complete with respect to a class of neighborhood frames but not
complete with respect to any class of relational frames. Gerson showed this for a logic
extending S4 (Gerson, 1975a) and a logic extending T (Gerson, 1976). Other examples of
modal logics that are complete with respect to neighborhood frames but incomplete with
respect to relational frames are found in (Shehtman, 2005). The proofs of these results
are beyond the scope of this book, and so I do not not include them here. The interested
reader is invited to consult Litak (2004, 2005) and Shehtman (2005) for further results and
an overview of this fascinating literature.

A seemingly simple generalization of neighborhood frames allows us to bypass the
incompleteness results mentioned above and to prove a general completeness theorem
for all classical modal logics. There is an analogous result for relational frames, and a rich
mathematical theory of so-called general relational frames. See Blackburn et al. (2001,
Chapter 5) for an overview of general relational frames and their use in the model theory
of normal modal logic. It is beyond the scope of this book to go into the details of this
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theory. Instead, I show how to adapt the definition of a general relational frame to the
neighborhood setting and prove that all classical modal logics are complete with respect
to their general neighborhood frame.

Definition 2.68 (General Neighborhood Frame) A general neighborhood frame is a tu-
ple F g = 〈W,N,A〉, where W is a non-empty set of states, N is a neighborhood function,
and A is a collection of subsets of W closed under intersections, complements, and the
mN operator. /

A valuation V : At→ ℘(W) is admissible for a general frame 〈W,N,A〉 provided, for
each p ∈ At, V(p) ∈ A.

Definition 2.69 (General Neighborhood Model) Suppose that F g = 〈W,N,A〉 is a gen-
eral neighborhood frame. A general neighborhood model based on F g is a tuple
M

g = 〈W,N,A,V〉, where V is an admissible valuation. /

On general models, truth for the basic modal language is defined as in Definition 1.15.
The first observation is that on a general model, the truth set of all formulas is contained
in the distinguished collection of propositions.

Lemma 2.70 LetMg = 〈W,N,A,V〉 be a general neighborhood model. Then, for each ϕ ∈ L,
[[ϕ]]Mg ∈ A.

Proof. The proof is an easy induction over the structure of ϕ. qed

Suppose that L is a modal logic containing E. It is easy to show that the set AL =
{|ϕ|L | ϕ ∈ L} is a Boolean algebra (i.e., closed under intersections and complements)
and closed under the mN operator. A general frame F g is called an L-general frame,
if L is valid on F g. I will show that for any modal logic L containing E, the canonical
general frame is an L-general frame. A general frame 〈WL,NL,AL〉 is said to be the L-
canonical general frame provided that 〈WL,NL, 〉 is the minimal L-canonical frame (i.e.,
WL = ML and NL = Nmin

L ) andAL = {|ϕ|L | ϕ ∈ L}. If L is a modal logic containing E, then
F

g
L = 〈WL,NL,AL〉 is the L-canonical frame andMg

L = 〈WL,NL,AL,VL〉 is the L-canonical
general model. Note that the minimal canonical neighborhood function, Nmin

L , is used for
all classical modal logics. (Compare this to the completeness proofs from Section 2.3.1.)

Theorem 2.71 Suppose that L is any logic containing E. Then,

F
g

L |= L.

Proof. Suppose that F g
L = 〈WL,NL,AL〉 is the L-canonical general frame. It is a simple

exercise to adapt the proof of the Truth Lemma (Lemma 2.60) to prove a Truth Lemma for
M

g
L: For all ϕ ∈ L, [[ϕ]]

M
g
L

= |ϕ|L.
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Suppose that ϕ ∈ L, and V is an admissible valuation for F g
L . We must show that

M
g = 〈ML,NL,AL,V〉 validates ϕ. Since V is admissible for F g

L , for each propositional
letter pi occurring in ϕ, V(pi) ∈ AL. Hence, for each pi (there are only finitely many),
V(pi) = |ψi|L for some formula ψi ∈ L. Let ϕ′ be ϕ where each pi is replaced with ψi. We
prove by induction on ϕ that

[[ϕ]]Mg = [[ϕ′]]
M

g
L
.

The base case is ϕ = p. Then, ϕ′ = ψ for some ψ ∈ L, where V(p) = |ψ|L ∈ AL. Hence,

Γ ∈ [[p]]Mg iff Γ ∈ V(p) ∈ AL (definition of truth)
iff Γ ∈ |ψ|L for some ψ ∈ L (since V(p) = |ψ|L)
iff Γ ∈ [[ψ]]

M
g
L

(Truth Lemma forMg
L)

The argument for the Boolean cases is as usual. Suppose that ϕ is of the form �γ. The
induction hypothesis is [[γ]]Mg = [[γ′]]

M
g
L
. Then,

Γ ∈ [[�γ]]Mg iff [[γ]]Mg ∈ NL(Γ) (Definition of truth)
iff [[γ′]]

M
g
L
∈ NL(Γ) (Induction hypothesis)

iff Γ ∈ [[�γ′]]
M

g
L

(Definition of truth)

Suppose that ϕ ∈ L and Mg = 〈WL,NL,AL,V〉 is any general model based on the
general canonical frame for L. Since L is closed under uniform substitution, ϕ′ ∈ L where
ϕ′ is ϕ where each atomic proposition p in ϕ is replaced with the formula ψ ∈ L such
that V(p) = |ψ|L ∈ AL. Then, by the Truth Lemma for Mg

L, ϕ′ is valid on Mg
L. Since

[[ϕ]]Mg = [[ϕ′]]
M

g
L
, ϕ is valid onMg. Hence, F g

L |= L. qed

Corollary 2.72 Every modal logic L extending E is sound and strongly complete with respect to
its class of general neighborhood frames.

Consult Došen (1989) for a more extensive discussion of general frames for neighbor-
hood structures (cf., also, Hansen, 2003).

2.4 Computational Issues

Given any logical system (such as neighborhood semantics for modal logic), there are
three natural computational problems that arise:

• Model Checking Problem: Given a (finitely represented) pointed neighborhood
modelM,w and a formula ϕ ∈ L, doesM,w |= ϕ?

• Satisfiability Problem: Given a formula ϕ, is there a model (from some class of
model) that satisfies ϕ? Equivalently, given a formula ϕ, is ϕ valid?

• Model Equivalence Problem: Given two (finitely represented) pointed neighbor-
hood modelsM,w andN , v, doM,w andN , v satisfy the same modal formulas?
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A variety of algorithms have been proposed (and implemented) to solve the above prob-
lems for various classes of relational structures and modal languages. Many of the same
ideas can be adapted to the neighborhood setting. In Section 2.4.1, I show that the satis-
fiability problem for non-normal modal logics is decidable, and I discuss the complexity
of this problem in Section 2.4.2. See, for example, Pauly (2002) for results about the
model-checking problem for coalitional logic (cf. Section 1.4.5).

2.4.1 Filtrations

Suppose thatM = 〈W,N,V〉 is a neighborhood model and Σ is a set of formulas from L.
For each w, v ∈W, write w ∼Σ v iff for each ϕ ∈ Σ, w |= ϕ iff v |= ϕ. In other words, w ∼Σ v
iff w and v agree on all formulas in Σ. It is easy to see that ∼Σ is an equivalence relation.
For each w ∈ W, let [w]Σ = {v | w ∼Σ v} be the equivalence class of ∼Σ. If X ⊆ W, let
[X]Σ = {[w] | w ∈ X}. If Σ is clear from the context, I may leave out the subscripts. A set of
sentences Σ is closed under subformulas provided that for all ϕ ∈ Σ, all subformulas of
ϕ are in Σ. With this notation in place, I can define a filtration.

Definition 2.73 (Filtration) Suppose thatM = 〈W,N,V〉 is a neighborhood model and Σ
is a set of sentences closed under subformulas. A filtration ofM through Σ is a model
M

f = 〈W f ,N f ,V f
〉, where

1. W f = [W]

2. For each w ∈W, for each �ϕ ∈ Σ, [[ϕ]]M ∈ N(w) iff [[[ϕ]]M] ∈ N f ([w])

3. For each p ∈ At, V(p) = [V(p)] /

If Σ is finite, then it is easy to see thatM f will be a finite model. We need only show that
this model agrees withM on all formulas in Σ.

Theorem 2.74 Suppose that M f = 〈W f ,N f ,V f
〉 is a filtration of M = 〈W,N,V〉 through (a

subformula closed) set of sentences Σ. Then, for each ϕ ∈ Σ,

M,w |= ϕ iffM f , [w] |= ϕ.

Proof. The proof is by induction on the structure of ϕ. The base case and Boolean
connectives are straightforward. (Note that the fact that Σ is closed under subformulas
is needed for to apply the induction hypothesis.) I consider only the case for the modal
operator. Suppose thatϕ is of the form�ψ. Then, since Σ is closed under subformulas and
�ψ ∈ Σ, we have ψ ∈ Σ. Then, the induction hypothesis implies that [[[ψ]]M] = [[ψ]]

M f .
Thus,

M,w |= �ψ iff [[ψ]]M ∈ N(w) (Definition of truth)
iff [[[ψ]]M] ∈ N f ([w]) (Item 2(a) in Definition 2.73)
iff [[ψ]]

M f ∈ N f ([w]) (induction hypothesis)
iff M

f , [w] |= �ψ (Definition of truth)
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The argument for the ^ operator is similar and left as an exercise for the reader. qed

The finest filtration of M = 〈W,N,V〉 is defined as follows: M f
min = 〈W f ,N f

min,V
f
〉,

where for all [w] ∈ W f , N f
min([w]) = {[[[ϕ]]M] | [[ϕ]]M ∈ N(w) and �ϕ ∈ Σ }. Obviously, the

finest filtration is,in fact, a filtration. In general, the finest filtration may not preserve the
algebraic properties of the neighborhood functions in a model. For example, the finest
filtration may not be closed under intersections or supersets. This can be easily rectified.

Lemma 2.75 Suppose thatM = 〈W,N,V〉 is closed under supersets and Σ is a subformula closed
set of formulas. IfM f is the finest filtration ofM, then (M f )mon is a filtration.

Proof. Suppose that �ϕ ∈ Σ. We prove that [[ϕ]]M ∈ N(w) iff [[[ϕ]]M] ∈ (N f
min([w]))mon.

Suppose that [[ϕ]]M ∈ N(w). Then, by the definition ofM f , [[[ϕ]]M] ∈ N f
min([w]), and so,

[[[ϕ]]M] ∈ (N f
min([w]))mon.

Now, suppose that [[[ϕ]]M] ∈ (N f
min([w]))mon. Then, there is a ψ such that [[[ψ]]M] ∈

N f
min([w]) and [[[ψ]]M] ⊆ [[[ϕ]]M]. Since [[[ψ]]M] ∈ N f

min([w]), we have �ψ ∈ Σ and [[ψ]]M ∈
N(w). We now show that [[ψ]]M ⊆ [[ϕ]]M. Suppose that v ∈ [[ψ]]M. Then, since ψ ∈ Σ,
[v] ∈ [[[ψ]]M]. Since [[[ψ]]M] ⊆ [[[ϕ]]M], we have [v] ∈ [[[ϕ]]M]. Theorem 2.74 implies that
v ∈ [[ϕ]]M. Therefore, since N(w) is closed under supersets and [[ψ]]M ⊆ [[ϕ]]M, we have
that [[ϕ]]M ∈ N(w). This completes the proof that (M f )mon is a filtration. qed

Exercise 49 Prove analogous results for neighborhood structures that (1) are closed under inter-
sections; (2) contain the unit; and (3) are consistent filters.

Theorem 2.74 shows that for any formula ϕ ∈ L, if it is satisfiable on a neighborhood
model, then it is satisfiable on a finite neighborhood model. A careful inspection of the
proof of Theorem 2.74 reveals that there is a bound on the size of the finite satisfying
model. In fact, this bound is a function of the number of symbols in ϕ. This means that
the satisfiability problem for E is decidable (one needs only search a finite number of
finite models to determine whether a formula ϕ has a satisfying model). Lemma 2.75 is
needed to show that EM is decidable. In fact, the filtration method (using Lemma 2.75
and Exercise 49) can be used to prove the following theorem.

Theorem 2.76 The satisfiability problems for E,EM,EC,EMC,EN,EMN,ECN, and ECMN
are all decidable. 11

Logics with non-iterative axioms

A formula of modal logic is said to be non-iterative provided if it does not contain any
modal operators inside the scope of a modal operator. For instance, �p → q, ((p ∧ q) →

11See Chellas (1980, Sections 7.5 and 9.5) for an extended discussion.
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r) → ((p ∧ q) � r), and �(p ∧ q) → (�p ∧ �q) are all examples of non-iterative formulas.
Examples of iterative formulas include �p → ��p, ^p → �^p, and �(�p → p). Suppose
that L is a modal logic extending E that can be axiomatized by non-iterative axioms. Many
of the logics studied in this book are examples of non-iterative logics. For instance, the
non-normal logics E,EM,EC, and EMC are all non-iterative. Lewis proved that every
finitely axiomatizable non-iterative logic is decidable (Lewis, 1974, Theorem 2). In this
section, I show how to adapt the filtration method from the previous section to prove
Lewis’s general decidability result.

Suppose that ϕ is a formula and L is a finite axiomatizable non-iterative modal logic
extending E. Let Σϕ be the set of all subformulas of ϕ. A ϕ-description is a set D defined
as follows:

D = X ∪ {¬σ | σ ∈ Σϕ − X}

where X ⊆ Σϕ. So, a Σϕ-description is a set of zero or more subformulas of ϕ together
with negations of all other subformulas of ϕ. Since Σϕ is finite, each ϕ-description D is
finite. Furthermore, there are only finitely many ϕ-descriptions.

For eachϕ-description D, choose a maximally consistent set ΓD containing D. Note that
by Lindenbaum’s Lemma, every L-consistentϕ-description D is contained in a maximally
consistent set (in general, D is contained in many maximally consistent sets). Let Wϕ =
{ΓD | D is a ϕ-description}. We will build a canonical model with Wϕ as the set of states.

Recall that if `L ϕ, then ϕ ∈ Γ for all maximally L-consistent sets. Furthermore, the
converse is true (Corollary 2.57): If ϕ ∈ Γ for all maximally consistent sets Γ, then `L ϕ.
An analogue of Corollary 2.57 holds with respect to Wϕ if we restrict attention to Boolean
combinations of formulas from Σϕ (i.e., substitution instances of propositional formulas
in which the atomic propositions are replaced by formulas from Σϕ).

Lemma 2.77 Suppose that ψ is a truth-functional combination of formulas from Σϕ. Then, `L ψ
iff ψ ∈ ΓD for all ΓD ∈Wϕ.

Proof. Suppose that ψ is a truth-functional combination of formulas from Σϕ. Then, if
`L ψ, then ψ ∈ Γ for all maximally L-consistent sets. Thus, in particular, ψ ∈ ΓD for all
ΓD ∈Wϕ. To prove the converse, suppose that ψ ∈ ΓD for all ΓD ∈Wϕ. Note that for each
ϕ-description D, since ψ is a Boolean combination of formulas from Σϕ, it cannot be the
case that both D ∪ {ψ} and D ∪ {¬ψ} are L-consistent. There are two cases:

Case 1: There is a ϕ-description D such that D∪ {¬ψ} is L-consistent. Then, D∪ {ψ} is not
L-consistent. Thus, ψ < ΓD. This contradicts the assumption that ψ ∈ ΓD for all ΓD ∈Wϕ.

Case 2: There is no ϕ-description D such that D ∪ {¬ψ} is L-consistent. Since ψ is a
Boolean combination of formulas from Σϕ and the ϕ-descriptions range over all possible
truth-value assignments to formulas in Σϕ, it must be the case that ψ is an instance of a
propositional tautology. Hence, `L ψ. qed
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Before discussing the main result of this section, I adapt the proof-set notation from
the previous section. For any formula ψ, let

|ψ|ϕ = {ΓD ∈Wϕ | ψ ∈ ΓD}.

A key observation is that every element of Wϕ can be associated with a modal formula.
Fix an enumeration of the formulas of the language of the modal logic L. For each ΓD ∈Wϕ,
let λD be the first (in the enumeration of all formulas) conjunction of all the formulas in D.
The formula λD is called the label of ΓD. Using these labels, we can associate a formula
with every subset of Wϕ. If X ⊆ Wϕ and X , ∅, then let λX =

∨
ΓD
λD. Let λ∅ = ϕ ∧ ¬ϕ.

Two immediate consequences of these definitions are:

1. For each X ⊆Wϕ, λX is a Boolean combination of formulas from Σϕ; and

2. For each X ⊆Wϕ, |λX|ϕ = X.

We can now define a finite ϕ-canonical model.

Definition 2.78 (ϕ-Canonical Model) Suppose thatϕ is a modal formula. Aϕ-Canonical
Model is a structureMϕ = 〈Wϕ,Nϕ,Vϕ〉, where Wϕ is defined as above. The neighbor-
hood function Nϕ : Wϕ → ℘(℘(Wϕ)) is defined as follows: For all ΓD ∈Wϕ,

N(ΓD) = {X | X ⊆Wϕ and �λX ∈ ΓD}

The valuation Vϕ : At→ ℘(Wϕ) is defined as Vϕ(p) = |p|ϕ for all p ∈ At. /

One can show that the modelMϕ is indeed a filtration (Definition 2.73) of the canonical
model for L. However, there is a stronger version of Theorem 2.74.

Proposition 2.79 Suppose that ϕ is a modal formula and that Mϕ = 〈Wϕ,Nϕ,Vϕ〉 is a ϕ-
canonical model for a consistent modal logic L containing E. Then,

1. If ψ is a Boolean combination of formulas ψ1, . . . , ψk such that [[ψi]]Mϕ
= |ψi|ϕ for i =

1, . . . , k, then [[ψ]]Mϕ
= |ψ|ϕ; and

2. If a) ψ is a Boolean combination of formulas from Σϕ and that b) [[ψ]]Mϕ
= |ψ|ϕ, then

[[�ψ]]Mϕ
= |�ψ|ϕ.

Proof. The proof of item 1 is straightforward, and so, it is left as an exercise for the reader.
We prove item 2. Suppose that a) ψ is a Boolean combination of formulas from Σϕ and
that b) [[ψ]]Mϕ

= |ψ|ϕ. Then,

[[�ψ]]Mϕ
= {ΓD | [[ψ]]Mϕ

∈ Nϕ(ΓD)}
= {ΓD | �λ[[ψ]]Mϕ

∈ ΓD}

= |�λ[[ψ]]Mϕ
|ϕ
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To complete the proof, we must show that |�λ[[ψ]]Mϕ
|ϕ = |�ψ|ϕ. Now by assumption b),

[[ψ]]Mϕ
= |ψ|ϕ and property 2 of labels, we have that |λ[[ψ]]Mϕ

| = [[ψ]]Mϕ
= |ψ|ϕ. Thus,

|λ[[ψ]]Mϕ
= |ψ|ϕ. This means that λ[[ψ]]Mϕ

↔ ψ ∈ ΓD for all ΓD ∈ Wϕ. By assumption a) and
the definition of a label, the formula λ[[ψ]]Mϕ

↔ ψ is a Boolean combination of formulas
from Σϕ. By Lemma 2.77, `L λ[[ψ]]Mϕ

↔ ψ. Since L contains the rule (RE), we have that
`L �λ[[ψ]]Mϕ

↔ �ψ. Applying Lemma 2.77 again, we have that �λ[[ψ]]Mϕ
↔ �ψ ∈ ΓD for all

ΓD ∈Wϕ. This implies that |�λ[[ψ]]Mϕ
|ϕ = |�ψ|ϕ, as desired. qed

Propositions 2.77 and 2.79 lead to the following key observation.

Proposition 2.80 1. Suppose that L is a consistent modal logic extending E with non-iterative
axioms. If ϕ is any formula and `L ψ, then ψ is valid on the ϕ-canonical frame 〈Wϕ,Nϕ〉.

2. If 0L ϕ, then ϕ is not valid on the ϕ-canonical frame 〈Wϕ,Nϕ〉.

Proof. Proof of item 1: Suppose that ψ is an instance of a non-iterative axiom of L. We
must show that ψ is valid on the ϕ-canonical frame 〈Wϕ,Nϕ〉. Let M′ = 〈Wϕ,Nϕ,V〉
be any model based on 〈Wϕ,Nϕ〉. We must show that [[ψ]]M′ = Wϕ. Let p1, . . . , pk be
the atomic propositions occurring in ψ, and let σ be any substitution in which for all
i = 1, . . . , k, σ(pi) = λ[[pi]]M′ . Then, ψσ is the formula ψ in which each atomic proposition
pi is replaced by the label of [[pi]]M′ . Since ψ is an instance of an non-iterative axiom, we
have that ψσ is also a substitution instance of a non-iterative axiom. Hence, `L ψσ. By
Lemma 2.56, ψσ ∈ Γ for all maximally L-consistent sets. Thus, ψσ ∈ ΓD for all ΓD ∈ Wϕ.
This means that |ψσ|ϕ = Wϕ. Furthermore, since ψ is a non-iterative formula and for
each i = 1, . . . , k, [[λ[[pi]]M′ ]]Mϕ

= |λ[[pi]]M′ |ϕ, Proposition 2.79 implies that [[ψσ]]Mϕ
= |ψσ|ϕ.

Therefore, [[ψσ]]Mϕ
= Wϕ. A simple induction on formulas shows that [[ψσ]]Mϕ

= [[ψ]]M′
(see Exercise 5). Hence, [[ψ]]M′ = Wϕ, as desired.

Proof of item 2: Suppose that 0L ϕ. Then, since ϕ is trivially a Boolean combination
of formulas from Σϕ, by Lemma 2.77, we have that [[ϕ]]Mϕ

, Wϕ. Thus, ϕ is not valid on
〈Wϕ,Nϕ〉. qed

This proposition shows that any non-iterative modal logic containing E is weakly
complete (Remark 2.52). Furthermore, since there is a bound on the size of Wϕ, which
can be calculated from ϕ, we only need to check finitely many12 models to determine if ϕ
is derivable in L.

Theorem 2.81 (Lewis 1974) Every non-iterative modal logic L containing E is weakly complete
and decidable.

12Of course, there are infinitely many variations of the finite ϕ-canonical model. However, we can ignore
irrelevant differences, such as isomorphic copies or models that differ in their interpretation of formulas not
among the subformulas of ϕ.
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There are two ways to extend this result. First, Lewis (1974) worked with a more
general modal language including modalities of arbitrary arity. It is not hard to adapt
the argument of this section to this more general setting. Lewis’s theorem, then, gives
a weak completeness and decidability result for the minimal conditional logic of sphere
model. That is, the following axiom system (expressed using the comparative possibility
modality � discussed in Section 1.4.3) is sound and complete for the class of all sphere
frames.

(taut) All instances of propositional tautologies
(trans) ((ϕ � ψ) ∧ (ψ � χ))→ (ϕ � χ)
(cons) (ϕ � ψ) ∨ (ψ � ϕ)
(dis) ((ϕ ∨ ψ) � χ)→ ((ϕ � χ) ∨ (ψ � χ))

(RE)
ϕ↔ ψ
χ↔ χ′

where χ′ is χ with one or more occurrences of ϕ
replaced with ψ.

A second generalization comes from Surendonk (2001) who showed that the argument
in this section can be adapted to prove strong completeness for non-iterative logics. See,
also, Schröder (2006); Pattinson and Schröder (2006) and Schröder and Pattinson (2007)
for further results about non-iterative modal logics.

2.4.2 Complexity

This brief section assumes that the reader has some familiarity with computation com-
plexity theory. As a reminder, a problem is in NP provided that it can be solved by a
non-deterministic Turing machine that is guaranteed to halt after a number of steps that
is polynomial in the size of the input. A problem is NP-complete provided that it is in
NP and that any other problem in NP can be polynomially reduced to it. Intuitively,
a problem is NP-complete if it is the “hardest” problem solved by a non-deterministic
Turing machine in a polynomial amount of time. The other complexity class that will
be mentioned is PSPACE. A problem is in PSPACE provided that it can be decided by
a deterministic Turing machine that uses at most a polynomial (in the size of the input)
amount of space (i.e., tape cells). A problem is PSPACE-complete provided that it is in
PSPACE and that every problem in PSPACE can be reduced to it. It is known that every
problem in NP is also in PSPACE, but the converse is still open (i.e., is every problem in
PSPACE also in NP?). However, it is widely believed that PSPACE-complete problems
are “harder” than NP-complete problems.

Using the above two complexity classes, we can classify how hard it is to solve the
satisfiability problem for different logical systems. The satisfiability problem for propo-
sitional logic is NP-complete. On the other hand, as is well known, the satisfiability
problem for first-order logic is undecidable (see Enderton (2001, Chapter 3) for a discus-
sion). The satisfiability problem for normal modal logic (i.e., with respect to relational
models) is PSPACE-complete. Interestingly, the satisfiability problem for some classes of
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relational models is “easier”. For example, the satisfiability problem for the class of all
relational frames in which the relations are equivalence relations is NP-complete. Marx
(2007) offers a more in-depth discussion of complexity issues in modal logic. 13 What
about the complexity of the satisfiability problem for neighborhood models?

The algorithm outlined in Section 2.4.1, which searches all finite models of a bounded
size to find a satisfying model runs in double exponential time (this follows from the
fact that there are exponentially many subformulas of a given formula). Vardi (1989)
showed that there is a much more efficient algorithm, proving that the satisfiability
problem with respect to all neighborhood frames is NP-complete. As in the case with
relational models, this result is sensitive to the properties of the neighborhood function.
Vardi (1989) also showed that the satisfiability problem for the class of neighborhood
models that are closed under intersections (i.e., the class of models for the logic EC) is
PSPACE-complete. Interestingly, Allen (2005) later showed that there are additional non-
normal modal logics with PSPACE-complete satisfiability problems. Allen studied logics
inspired by the generalized relational models discussed in Section 2.2.2. For each n ≥ 2,
let (Cn) be the follow axiom:

(Cn)
n∧

i=1

�ϕi → �
∨

1≤k,l≤n, k,l

(ϕk ∧ ϕl).

Let EMNCn be the logic extending EMN with instances of (Cn). Allen (2005) proved that
for each n ≥ 2, the satisfiability problem for EMNCn is PSPACE-complete.

2.4.3 Proof Theory for Non-Normal Modal Logics

While there is an extensive body of research focused on developing proof calculi for
normal modal logics14, there has been much less work developing proof calculi for non-
normal modal logics. Notable exceptions include Chapter 6 in Fitting (1983), the labeled
tableaux systems for non-normal modal logics in Governatori and Luppi (2000) and a
series of recent papers developing sequent calculi for non-normal modal logics (Gilbert
and Maffezioli, 2015; Girlando et al., 2016).

In this section, I briefly introduce sequents for non-normal modal logics. My aim in
this section is to use these sequents to further illustrate the issues that arose when dis-
cussing decidability (Section 2.4.1) and complexity (Section 2.4.2), rather than providing
a complete introduction to sequent calculi for non-normal modal logics.

Before defining a sequent, I discuss an elegant characterization of some non-normal
modal logics (cf. Definition 2.37) using inference rules. Consider the following inference
rules (where k ranges over the non-negative integers):

13Consult Halpern and Rêgo (2007) and Spaan (1993) for discussions of the curious fact that the satisfiability
problem for modal logics seems to be either NP-complete or PSPACE-hard.

14See Fitting (2006), Wansing (1998), and Negri (2011) for surveys of this literature.
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(Rk)
(ϕ1 ∧ · · · ∧ ϕk)→ ψ

(�ϕ1 ∧ · · · ∧ �ϕk)→ �ψ.

When k = 0 (so there are no antecedents), the above rule reduces to the rule of Necessita-
tion (Nec). When k = 1, the above rule is the monotonicity rule (RM) discussed in Section
2.3. Then, Lemma 2.39 can be rephrased as:

A modal logic S is monotonic iff (R1) is a derived rule.

This suggests the following characterization of normal and regular modal logics.

Proposition 2.82 Suppose that S is a modal logic that contains E. Then,

• S is regular iff (Rk) is a derived rule for all k ≥ 1.

• S is normal iff (Rk) is a derived rule for all k ≥ 0.

Exercise 50 Prove Proposition 2.82.

A careful examination of the above proof suggests a sequent-based proof calculus for
non-normal modal logic. I start by reminding the reader of the definition of a sequent
and the sequent rules for propositional logic.

Definition 2.83 (Sequent) A sequent is a structure Γ ⇒ ∆, where Γ and ∆ are finite
sequences15 of modal formulas. We write Γ, ϕ to denote the sequence of formulas in
which ϕ is the last element (similarly, ϕ,Γ is a sequence in which ϕ is the first element).
A sequent is valid on a class of neighborhood frames F if

∧
Γ→

∨
∆ is valid on F. /

As the reader is invited to verify, each of the following rules preserves validity of the
sequents and, together, form a complete system for all propositional tautologies.

Definition 2.84 (Propositional Sequent Rules)

Γ, p⇒ p,∆ (axiom)

Γ⇒ ∆

Γ′ ⇒ ∆′
(perm)

Γ⇒ ∆

Γ,Π⇒ ∆,Λ
(weak)

Γ⇒ ∆, ϕ ϕ,Π⇒ Λ

Γ,Π⇒ ∆,Λ
(cut)

where Γ′ and ∆′ are permutations of Γ and ∆, respectively.

15I have been using capital Greek letters to denote sets of formulas (c.f. Section 2.3.1). For the purposes of
this section, it does not matter much whether the components of a sequent are sets or sequences. However,
it is standard practice to define sequents using sequences of formulas. So, I will adopt the convention that
capital Greek letters denote sequences of formulas in this section.
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Γ, ϕ, ψ⇒ ∆

Γ, ϕ ∧ ψ⇒ ∆
(∧L)

Γ⇒ ϕ,∆ Γ⇒ ψ,∆
Γ⇒ ϕ ∧ ψ,∆

(∧R)

Γ, ϕ⇒ ∆ Γ, ψ⇒ ∆

Γ, ϕ ∨ ψ⇒ ∆
(∨L)

Γ⇒ ϕ,ψ,∆
Γ⇒ ϕ ∨ ψ,∆

(∨R)

Γ⇒ ϕ,∆
Γ,¬ϕ⇒ ∆

(¬L)
Γ⇒ ¬ϕ,∆
Γ, ϕ⇒ ∆

(¬R)

/

The above rules can be used to reduce sequents containing complex modal formulas
to a sequent of the following form:

~p,�ϕ1, . . . ,�ϕk ⇒ ~q,�ψ1, . . . ,�ψm,

where ~p and ~q are sequences of propositional variables. The main question when de-
veloping sequent rules for non-normal modal logics is how to further reduce the above
sequent. It is simplest to start with the logic EM. The key observation for this logic is
from van Benthem (2010):

Proposition 2.85 (van Benthem, 2010) The sequent

~p,�ϕ1, . . . ,�ϕk ⇒ ~q,�ψ1, . . . ,�ψm

is valid on the class of monotonic neighborhood frames if, and only if, either

• ~p and ~q overlap, or

• there is some 1 ≤ i ≤ k and 1 ≤ j ≤ m such that ϕi ⇒ ψ j is valid on the class of monotonic
neighborhood frames.

Proof. I show that if there is no overlap between ~p and ~q and ϕi ⇒ ψ j is not valid for each
1 ≤ i ≤ k and 1 ≤ j ≤ m, then~p,�ϕ1, . . . ,�ϕk ⇒ ~q,�ψ1, . . . ,�ψm is not valid. The remaining
cases of the proof are left to the reader. Suppose that for each i, j (to simplify the proof,
I will write “for each i, j” instead of “for each 1 ≤ i ≤ k and 1 ≤ j ≤ m”), ϕi ⇒ ψ j is not
valid. Then, for each i, j, there is a neighborhood modelMi j = 〈Wi j,Ni j,Vi j〉 with a state
wi j ∈Wi j such thatMi j,wi j |= ϕi ∧¬ψ j. I will show that ~p,�ϕ1, . . . ,�ϕk ⇒ ~q,�ψ1, . . . ,�ψm
is not valid. Without loss of generality, we can assume that the sets Wi j are pairwise
disjoint. LetM = 〈W,N,V〉 be a neighborhood model, where

• W =
⋃

i, j Wi j ∪ {w∗} (with w∗ a new state not in any Wi j).

• Define V : At → ℘(W) as follows: Let V0 : At → ℘(
⋃

i, j Wi j) be the function where
for all p ∈ At, V(p) =

⋃
i, j Vi j(p). Then, V is the function where for all p ∈ At:

V(p) =

V0(p) ∪ {w∗} if p is on the list ~p
V0(p) otherwise.
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• Define N : W → ℘(℘(W)) as follows: For all w ∈
⋃

i, j Wi j, N(w) = {X | X ⊆
W and there is a Y ∈ Ni j(w) such that Y ⊆ X}, where i, j are the unique indices such
that w ∈Wi j. The neighborhood at w∗ is defined as follows:

N(w∗) = {X | X ⊆W and w∗ ∈ X}.

It is immediate from the definition that the above modelM = 〈W,N,V〉 is a monotonic
neighborhood model. Furthermore, by construction we have that M,w∗ |=

∧
1≤i≤k �ϕi

andM,w∗ 6|=
∨

1≤ j≤m �ψ j. It follows from this observation and the definition of the above
model that the sequent ~p,�ϕ1, . . . ,�ϕk ⇒ ~q,�ψ1, . . . ,�ψm is not valid. qed

Proposition 2.85 justifies the following rule for the non-normal modal logic EM:

Γ, ϕ⇒ ∆, ψ
Γ,�ϕ⇒ ∆,�ψ

(�M)

Sequent rules for other non-normal modal logics can be developed in a similar manner.
The minimal non-normal modal logic E requires a simple modification of Proposition 2.85.

Proposition 2.86 The sequent

~p,�ϕ1, . . . ,�ϕk ⇒ ~q,�ψ1, . . . ,�ψm

is valid on the class of neighborhood frames if, and only if, either

• ~p and ~q overlap, or

• there is some 1 ≤ i ≤ k and 1 ≤ j ≤ m such that both ϕi ⇒ ψ j and ψ j ⇒ ϕi are valid on the
class of neighborhood frames.

Exercise 51 Prove Proposition 2.86. (Hint: Adapt the proof of Proposition 2.85.)

The corresponding sequent rule for the minimal non-normal modal logic E is:

Γ, ϕ⇒ ∆, ψ Γ, ψ⇒ ∆, ϕ
Γ,�ϕ⇒ ∆,�ψ

(�E)

Finally, there is an analogous result for the class of neighborhood frames closed under
intersections.

Proposition 2.87 The sequent

~p,�ϕ1, . . . ,�ϕk ⇒ ~q,�ψ1, . . . ,�ψm

is valid on the class of neighborhood frames that are closed under finite intersections if, and only
if, either
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• ~p and ~q overlap, or

• there is some 1 ≤ i, j ≤ k such that ~p,�ϕ1, . . . ,�ϕk′ , �(ϕi ∧ ϕ j) ⇒ ~q,�ψ1, . . .�ψm is
valid on the class of neighborhood frames that are closed under finite intersections (where
�ϕ1, . . . ,�ϕk′ is the sequence �ϕ1, . . . ,�ϕk without �ϕi and �ϕ j).

Exercise 52 Prove Proposition 2.87.

The resulting sequent rule for the logic EC is:

Γ,�(ϕ ∧ ψ)⇒ ∆

Γ,�ϕ,�ψ⇒ ∆
(�C)

There is an important difference between the sequent rules for E and EM and the one
for EC. Reading the rules from the bottom up, the first two rules reduce the complexity of
formulas in a sequent (i.e., the rules remove the ‘�’ from two formulas in a sequent). The
sequent for EC behaves differently. This rule does not simplify any formulas, but, rather,
reduces the length of the antecedent of the sequent. This difference has ramifications
for the complexity of the proof search problem (given a formula ϕ, determine if there
is a proof of ϕ). Indeed, this difference explains, in part, why the complexity of the
satisfiability problem for E and EM is NP-complete, while it is PSPACE-complete for EC.

This is just the first steps towards a complete sequent system for non-normal modal
logics. Readers interested in developing these ideas further are invited to consult Negri
(2016), and the references therein.

2.5 Frame Correspondence

A central topic in the model theory of modal logic is correspondence theory (cf. Blackburn
et al., 2001, Chapter 3). The aim of this theory is to identify (and characterize) modal
formulas that correspond to interesting properties of relational frames. For instance, it is
well known that a relational frame F = 〈W,R〉 validates �ϕ → ϕ iff R is reflexive. The
modal formula �ϕ → ϕ is said to correspond to the reflexivity property. See Appendix
A.2.1 for an introduction to correspondence theory with respect to relational structures.

Many of the ideas of correspondence theory can be adapted to the neighborhood
setting. In this case, modal formulas express properties of neighborhood functions.

Definition 2.88 A modal formula ϕ ∈ L defines a property P of neighborhood functions
if any neighborhood frame F = 〈W,N〉 has property P iff F validates ϕ. /

There are some important differences when formulas are interpreted on neighborhood
frames instead of relational frame. The first difference is that formulas corresponding
to the same property on relational frames may correspond to different properties on
neighborhood frames. For example, consider the formulas ^> and �ϕ → ^ϕ. On
relational frames, these formulas both define the same property: seriality (a relation R is
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serial provided that for each state w, there is a state v such that w R v). 16 However, on
the class of neighborhood frames, these formulas express different properties. The first
formula ^> is easily seen to express the fact that the empty set is not an element of the
neighborhoods. That is,^> is valid on a neighborhood frameF iff the empty set is not an
element of any neighborhood (the proof follows immediately from the definition of truth
of modal formulas). The second formula expresses a a different property of neighborhood
functions.

Lemma 2.89 Let F = 〈W,N〉 be a neighborhood frame. Then, F |= �ϕ → ^ϕ iff F is proper
(i.e., if X ∈ N(w), then XC < N(w)).

Proof. The right-to-left direction is straightforward. For the left-to-right direction, sup-
pose that F = 〈W,N〉 is not proper. Then, there is a state w ∈ W and a set X ⊆ W such
that X ∈ N(w) and XC

∈ N(w). Define a model M = 〈W,N,V〉 with V(p) = X. Then,
by definition, M,w |= �p, and since [[¬p]]M = XC

∈ N(w), we haveM,w |= ¬^p. Thus,
M,w 6|= �p→ ¬�¬p; and so, �ϕ→ ^ϕ is not valid on F . qed

A second difference is that modal formulas that are valid on all relational frames
correspond to non-trivial properties of neighborhood functions.

Lemma 2.90 Suppose that F = 〈W,N〉 is a neighborhood frame. Then, F |= �ϕ ∧ �ψ →
�(ϕ ∧ ψ) iff F is closed under finite intersections 17.

Proof. Suppose that F = 〈W,N〉 is a neighborhood frame that is closed under finite
intersections. We must show F |= �ϕ ∧ �ψ → �(ϕ ∧ ψ). Let M = 〈W,N,V〉 be any
model based on F and w ∈ W. Suppose that M,w |= �ϕ ∧ �ψ. Then, [[ϕ]]M ∈ N(w)
and [[ψ]]M ∈ N(w). Since N(w) is closed under finite intersections, [[ϕ]]M ∩ [[ψ]]M ∈ N(w).
Hence, [[ϕ ∧ ψ]]M ∈ N(w) and, therefore,M,w |= �(ϕ ∧ ψ).

Suppose that F = 〈W,N〉 is not closed under finite intersections. Then, 〈W,N〉 is not
closed under binary interactions (see Lemma 1.7). Thus, there is a state w ∈ W and two
sets Y and Y′ such that Y,Y′ ∈ N(w), but Y∩Y′ < N(w). Define a valuation function so that
V(p) = Y and V(q) = Y′. This implies thatM,w |= �p∧�q. However, since Y∩Y′ < N(w),
M,w 6|= �(p ∧ q). qed

Lemma 2.91 Suppose that F = 〈W,N〉 is a neighborhood frame. Then, F |= �(ϕ ∧ ψ) →
�ϕ ∧ �ψ iff F is closed under supersets.

Proof. The right-to-left direction is left as an exercise for the reader. Suppose that
F = 〈W,N〉 is not closed under supersets. Then, there are sets X and Y such that X ⊆ Y,

16This makes sense since these formulas are semantically equivalent on the class of relational frames (i.e.,
they are true at exactly the same points in all relational models).

17Recall that a frame F = 〈W,N〉 is said to be closed under finite intersection provided that for all w ∈ W,
N(w) is closed under finite intersections. See the discussion after Remark 1.13.
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X ∈ N(w) but Y < N(w). Define a valuation V such that V(p) = X and V(q) = Y. Then, since
X ⊆ Y, [[p ∧ q]]M = X ∈ N(w). Hence,M,w |= �(p ∧ q). However, since, [[q]]M = Y < N(w),
we haveM,w 6|= �q. Hence,M,w 6|= �p ∧ �q. qed

Lemma 2.92 Suppose that F = 〈W,N〉 is a neighborhood frame. Then, F |= �> iff F contains
the unit.

Proof. Left as an exercise for the reader. qed

I conclude this brief introduction to correspondence theory by identifying properties
of neighborhood functions that correspond to well-studied modal formulas.

Lemma 2.93 Suppose that F = 〈W,N〉 is a neighborhood frame such that for each w ∈ W,
N(w) , ∅.

1. F |= �ϕ→ ϕ iff for each w ∈W, w ∈ ∩N(w).

2. F |= �ϕ → ��ϕ iff for each w ∈ W, if X ∈ N(w), then mN(X) ∈ N(w) (recall that
mN(X) = {v | X ∈ N(v)}).

Proof. Suppose that F = 〈W,N〉 is a neighborhood frame. Suppose that for each w ∈ W,
w ∈ ∩N(w). Let M be any model based on F and w ∈ W. Suppose that M,w |= �ϕ.
Then, [[ϕ]]M ∈ N(w). Since w ∈ ∩N(w) ⊆ [[ϕ]]M, w ∈ [[ϕ]]M. Hence, M,w |= ϕ. As for
the converse, suppose that w < ∩N(w). Since N(w) , ∅, there is an X ∈ N(w) (note that X
may be empty) such that w < X; otherwise, w ∈ ∩N(w). Define a valuation V such that
V(p) = X. Then, it is easy to see thatM,w |= �p, butM,w 6|= p.

Suppose that for each w ∈W, if X ∈ N(w), then {v | X ∈ N(v)} ∈ N(w). Suppose thatM
is any model based on F andM,w |= �ϕ. Then, [[ϕ]]M ∈ N(w). Therefore, by assumption
{v | [[ϕ]]M ∈ N(v)} ∈ N(w). Since [[�ϕ]]M = {v | [[ϕ]]M ∈ N(w)}, M,w |= ��ϕ. For the
other direction, suppose that there is some state w ∈W and set X such that X ∈ N(w), but
{v | X ∈ N(v)} < N(w). Then, define a valuation V such that V(p) = X. It is easy to verify
thatM,w |= �p, butM,w 6|= ��p. qed

Exercise 53 Find properties on frames that are defined by the following formulas:

1. ¬�ϕ→ �¬�ϕ

2. �ϕ ∨ �¬ϕ

3. ^�ϕ→ �^ϕ

There is much more to say about correspondence theory with respect to neighborhood
frames. In particular, the Sahlqvist Theorem (Sahlqvist, 1975) provides a syntactic defini-
tion of a class of modal formulas, each of which corresponds to a first-order property of
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a relational frame. 18 An interesting line of research is to explore generalizations of the
Sahlqvist theorem and related algorithms (Conradie et al., 2006) for finding first-order
correspondents to the class of neighborhood frames. One approach is to first translate
neighborhood models and the basic modal language into a special class of relational mod-
els with an appropriate modal language (see Section 2.6.2 for details of such a translation).
The Sahlqvist Theorem can then be applied to this special class of relational models and
modal language. Consult (Kracht and Wolter, 1999) and Hansen (2003) for details of
this approach. A second approach is to explore different generalizations of the Sahlqvist
Theorem. Consult Palmigiano et al. (2016) for a generalization of the Sahlqvist Theorem
to regular modal logics (Definition 2.37).

2.6 Translations

Neighborhood models generalize relational models by replacing a relation between
worlds (R ⊆ W ×W) with a relation between worlds and sets of worlds (N ⊆ R × ℘(W)).
In Section 2.2.1, we saw that the class of augmented neighborhood models is modally
equivalent to the class of relational models. The central idea is that, for each augmented
set X ⊆ ℘(W), there is a relation RX ⊆ W ×W defined as follows: w RX v iff v ∈

⋂
X.

The definition of RX makes sense only if the collection of subsets X is augmented. In this
Section, I show that there are more subtle connections between neighborhood models
(and non-normal modal logics) and relational models (and normal modal logics).

The first connection is that every collection of subsetsX ⊆ ℘(W) can be associated with
an ordering �X⊆ W ×W. For each w, v ∈ W, let w �X v iff for all X ∈ X, if w ∈ X, then
v ∈ X. That is, v is ranked at least as high as w by �X provided that every set from X
containing w also contains v. This is a well-known definition in point-set topology (it is
called the specializaton ordering), the study of preferences (Andreka et al., 2002; Liu, 2011)
and multi-criteria decision-making (Dietrich and List, 2013; de Jongh and Liu, 2009). In
Section 2.6.1, I use this ordering to facilitate a rigorous comparison between the evidence
models from Section 1.4.4 and plausibility models, which are well known in the study of
modal logics of belief and belief revision.

The second connection is based on neighborhood models themselves. On the face of
it, the definition of truth of the modal operator on a neighborhood model seems to be
a second-order statement since it asserts the existence of a subset implying either that a
formula is true or that it is equal to the truth set of a formula. However, appearances are
deceiving. By treating the neighborhoods as states in a larger model, there is a way to
translate every neighborhood model into a relational model. Building on this idea, it can
be shown that every non-normal modal logic can be simulated by a normal modal logic
(Section 2.6.2), and that there is a translation of non-normal modal logic into first-order
logic (Section 2.6.3).

18See Sections 3.5 - 3.7 in Blackburn et al. (2001) for details.
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2.6.1 From Neighborhoods to Orders

A plausibility ordering on a set of states W is a reflexive and transitive relation�⊆W×W.
The intended meaning of w � v is that “(according to the agent) world v is at least as
plausible as w”. Plausibility models are widely used as a semantics for modal logics of
belief (van Benthem, 2004; Baltag and Smets, 2006b,a; Girard, 2008) and deontic logics
(Hansson, 1990; van Benthem et al., 2014).

Definition 2.94 (Plausibility model) A plausibility model is a tupleM = 〈W,�,V〉where
W is a finite nonempty set; �⊆ W ×W is a reflexive and transitive relation on W; and
V : At → ℘(W) is a valuation function. If � is also connected (for each w, v ∈ W, either
w � v or v � w), then we say thatM is a connected plausibility model. A pairM,w where
w is a state is called a pointed (connected) plausibility model. /

When two worlds w and v cannot be compared by the plausibility ordering (for an agent),
the interpretation is that the agent has either accepted contradictory evidence or lacks
enough evidence to compare the two states.19

A number of different modal languages have been used to reason about plausibility
structures. For instance, let Lpl(At), where At is the set of atomic propositions, be the
smallest set of formulas generated by the following grammar:

p | ¬ϕ | ϕ ∧ ψ | [B]ψ | [�]ϕ | [A]ϕ

where p ∈ At. For each © ∈ {B,�,A}, let 〈©〉ϕ be defined as ¬[©]¬ϕ. Before defining
truth for this language, I need some notation. For w, v ∈ W, write w ≺ v if w � v and
v � w. For X ⊆W, let

Max�(X) = {w ∈ X | there is no v ∈ X such that w ≺ v}.

For each set X, Max�(X) is the set of most plausible worlds in X (i.e., the maximal elements
of X according to the plausibility order �)20. Suppose thatM = 〈W,�,V〉 is a plausibility
model with w ∈ W. Truth of the Boolean connectives and atomic propositions is defined
as usual. I give only the clauses for the modal operators:

• M,w |= [B]ϕ iff Max�(W) ⊆ [[ϕ]]M

• M,w |= [�]ϕ iff for all v ∈W, if w � v thenM, v |= ϕ

• M,w |= [A]ϕ iff for all v ∈W,M, v |= ϕ.

19Swanson (2011) has an extensive discussion of incomparability when modeling conditionals.
20To keep things simple, I assume that the set of worlds is finite, so this maximal set always exists. One

needs a (converse) well-foundedness condition to guarantee this when there are infinitely many states.
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So, ϕ is believed provided that ϕ is true throughout all of the most plausible states.
There is much more to say about plausibility structures, their relationship with theories of
belief revision, and the modal logic of beliefs (see van Benthem (2011) and Pacuit (2013a)
for discussions). In the remainder of this section, I focus on the relationship between
plausibility models and neighborhood models.

From Plausibility Structures to Neighborhood Structures There is a natural subset
space associated with every plausibility model.

Definition 2.95 (Upwards Closed Sets) Suppose that � is a plausibility ordering on a set
of states W (i.e., a reflexive and transitive relation on W). The upwards closure of a set X,
denoted ↑X, is the set

↑X = {v ∈W | there is a w ∈ X such that w � v}.

A set X is �-closed when ↑X ⊆ X. Let F� = {↑X | X ⊆W} be the set of �-closed sets. /

Exercise 54 If� is a plausibility ordering on W, thenF� is closed under non-empty intersections.
(Why do I need to specify non-empty intersections?) Is F� closed under supersets?

Using the above notation, there is a straightforward way to turn any plausibility model
into a neighborhood structure. LetM = 〈W,�,V〉 be a plausibility model. The associated
neighborhood model is the modelM� = 〈W�,N�,V�〉, where W� = W; for each w ∈ W,
N�(w) = F�; and V� = V. Thus, the associated neighborhood modelM� has a uniform
neighborhood function (each state is associated with the same collection of sets).

Remark 2.96 A more general definition of plausibility models is possible in which each state is
associated with a different plausibility ordering. That is, for each w ∈ W, �w is a plausibility
ordering on W. In this case, the neighborhoods may vary at each state: N�(w) = F�w . I focus on
a single, global plausibility ordering to simplify the discussion.

The next step is to show that every plausibility model M = 〈W,�,V〉 is equivalent to the
corresponding neighborhood modelM�. Here, we face a problem that did not arise in
the previous sections. The notion of equivalence between classes of models discussed in
Section 2.1 assumes that there is a single underlying language that can be interpreted on
both classes of models. However, I have not given a definition of truth for the language
L

pl over neighborhood models.
One solution is to find a translation between an appropriate language interpreted over

neighborhood models and Lpl. Before defining such a translation, I note an important
fact about the language Lpl: We can restrict attention to formulas from Lpl that include
only the [�] and [A] modalities.

Fact 2.97 On finite plausibility models, the belief modality [B] is definable in terms of the [A] and
[�] modalities. That is,

86



Neighborhood Semantics for Modal Logic Chapter 2, Section 2.6

• [B]ϕ ↔ [A]〈�〉[�]ϕ is valid on finite plausibility models. 21

The proof is straightforward given the following observation. The set of maximal
elements in a plausibility model can be partitioned into final clusters:

Definition 2.98 (Final Cluster) LetM = 〈W,�,V〉 be a plausibility model. A final cluster
inM is a set X ⊆ Max�(W) that is maximal and completely connected: for any x, y ∈ X,
x � y and y � x, and there is no v ∈W such that w ≺ v for some w ∈ X. /

In a connected plausibility model, there is only one largest final cluster: the set Max�(W).
However, when the order is not connected, there may be disjoint final clusters. Using this
terminology, (on finite models) [B]ϕ is true provided that ϕ is true throughout all final
clusters.

Exercise 55 Prove Fact 2.97.

LetLpl
0 be the sublanguage ofLpl without the belief modality [B]. The appropriate lan-

guage for neighborhood models is L〈 ],[A]—the propositional modal language generated
by adding the neighborhood modality 〈 ] and the universal modality [A] to a proposi-
tional language. The definition of truth for formulas of the form 〈 ]ϕ is given in Section
1.2.2 (Definition 1.2.2), and the clause for the universal modality [A] is exactly as it is for
the plausibility models given above. I can now define the translation between these two
languages.

Definition 2.99 (�-translation) The translation tr� : L〈 ],[A]
→ L

pl
0 is defined by induction

on formulas in L〈 ],[A]:

• for each p ∈ At, tr�(p) = p;

• tr�(¬ϕ) = ¬tr�(ϕ) and tr�(ϕ ∧ ψ) = tr�(ϕ) ∧ tr�(ψ);

• tr�([A]ϕ) = [A](tr�(ϕ)); and

• tr�(〈 ]ϕ) = 〈A〉[�](tr�(ϕ)). /

Proposition 2.100 Let M = 〈W,�,V〉 be a plausibility model. For any ϕ ∈ L〈 ],[A] and state
w ∈W,

M,w |= tr�(ϕ) iffM�,w |= ϕ.

The proof is straightforward and left to the reader. However, this is a weak result. The
conclusion is simply that every plausibility model “contains” a neighborhood model.
Furthermore, anything that can be expressed in the language L〈 ],[A] can be translated
into the language Lpl. Of course, this translation is not surjective. That is, there are
formulas of Lpl that are not the translation of some formula from L〈 ],[A]. So, we cannot
conclude that for every plausibility model, there is a modally equivalent neighborhood
model (at least with respect to the language Lpl).

21This was first discussed by Boutilier (1992).
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From Neighborhood Models to Plausibility Models There is also a natural way to
define a plausibility ordering given any subset space. The approach is to use the so-called
specialization order, a notion that occurs in point-set topology (cf. Section 1.4.1) and in
recent theories of relation merge (cf. Andreka et al., 2002; Liu, 2011).

Definition 2.101 (Specialization Order) Suppose that 〈W,F 〉 is a subset space. Define
�F⊆W ×W as follows:

w �F v iff for all X ∈ F , if w ∈ X, then v ∈ X. /

The intuition is that v is “at least as special” as w provided that every set inF that contains
w also contains v. If F is a set of evidence as in the evidence models from Section 1.4.4,
then w �F v means that every piece of evidence that supports w (i.e., contains w) also
supports v, though there might be some pieces of evidence that support v but not w. To
make this definition a bit more concrete, here is a simple illustration.

w1 w2 w3 w4

F

w1

w2

w4

w3

�F

w1 w2 w3 w4

F
′

w1 w3

w2

w4

�F ′

Of course, the relational properties of �F depend on the algebraic properties of F .
However, all specialization orders are reflexive and transitive:

Observation 2.102 Suppose that 〈W,F 〉 is a subset space. Then, �F is a transitive and reflexive
relation on W.

Proof. Suppose that w �F v and v �F y. Suppose, also, that X ∈ F and w ∈ X. Then,
since w �F v, we have v ∈ X. Since, v �F y, we have y ∈ X. Thus, w �F y. Clearly, �F is
reflexive. qed

The examples given above show that, in general, the specialization order �F is not
connected.

Exercise 56 1. What property of F guarantees that the specialization ordering �F is con-
nected? Recall that a relation R ⊆ X × X is connected if every pair of distinct elements
from X is related. That is, for all x, y ∈ X, if x , y, then either x R y or y R x.
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2. Suppose that � is the reflexive, transitive closure of {(w, v), (v, x), (w, y), (y, x)} (that is, � is
the smallest relation containing this set that is reflexive and transitive). Find a subset space
F on W = {w, v, y, x} such that �=�F .

There are (at least) two different ways to associate a plausibility model with a neigh-
borhood structureM = 〈W,N,V〉. The first is to assign to each state w ∈W, a plausibility
ordering �N(w). Strictly speaking, unless N is a constant function, this is not a plausibility
model according to Definition 2.94 since each state is assigned a different plausibility
ordering (cf. Remark 2.96). Rather than pursuing this line of thought, I focus on the rela-
tionship between plausibility models and the evidence models from Section 1.4.4. It turns
out that the precise relationship is subtle. Following the discussions in van Benthem et al.
(2014) and van Benthem and Pacuit (2011, Section 5), I briefly discuss this relationship in
the remainder of this section, focusing on uniform evidence models.

The first step is to combine the two languagesLev andLpl. LetLepl(At) be the smallest
set of formulas generated by the following grammar:

p | ¬ϕ | (ϕ ∧ ψ) | 〈 ]ϕ | [�]ϕ | [B]ϕ | [A]ϕ

where p ∈ At. A model for this language includes relations for the [�] and [B] modalities
(cf. Appendix A) and a neighborhood function for the 〈 ] modality ([A] is the universal
modality). Given such a model, the definition of truth for formulas from Lepl follows the
usual pattern (cf. Definition A.3). For example, suppose thatM = 〈W,E,�,B,V〉, where
E is a neighborhood function, B ⊆ W ×W, �⊆ W ×W and V : At → ℘(W) is a valuation
function. The definition of truth for the modalities at w ∈W is:

• M,w |= 〈 ]ϕ iff there is an X ∈ E(w) such that for all v ∈ X,M, v |= ϕ.

• M,w |= [�]ϕ iff for all v ∈W, if w � v, thenM, v |= ϕ.

• M,w |= [B]ϕ iff for all v ∈W, if w B v, thenM, v |= ϕ.

• M,w |= [A]ϕ iff for all v ∈W,M, v |= ϕ.

Given the intended interpretation of the modalities in Lepl, it is natural to impose the
following constraints on a model 〈W,E,�,B,V〉:

1. for each w ∈W, ∅ < E(w) and W ∈ E(w);

2. for all w, v,u ∈W, if w � v and w ∈ X ∈ E(u), then v ∈ X ; and

3. if w � v and u B w, then u B v.

To see the importance of these constraints, consider a modelM = 〈W,E,�E,B,V〉, where
E is a uniform evidence function, �E is the specialization order defined from E and
B ⊆ W ×W. It is easy to find such a model with states w, v and u such that w B v and
v �E u; yet it is not the case that w B u. For example, let W = {w, v} and E = {W}, and
B = {(w,w)}. Then, w B w and w �E v; yet it is not the case that w B v. However, this can
never happen on an intended model:
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Definition 2.103 (Transforming an Evidence Model) Suppose that M = 〈W,E,V〉 is a
uniform evidence model (recall Definition 1.41). An extended evidence model is a
structureMM = 〈W,E,BE,�E,V〉, where

• w BE v iff v ∈
⋂
X for some scenario X from E; and

• w �E v iff for any X ∈ E, if w ∈ X, then v ∈ X. /

The following exercise illustrates key properties satisfied by extended evidence models.

Exercise 57 Suppose thatM = 〈W,E,V〉 is a uniform evidence model, and let �E be defined as
above. For each w ∈ W, let E[w] = {X ∈ E | w ∈ X}. Prove the following two statements (cf. van
Benthem et al., 2014, Lemma 4).

1. For each w ∈W, if w ∈
⋂
X for some scenarioX ⊆ E, then w is �E-maximal. Furthermore,

if X is a non-empty scenario from E, then X = E[w] for �E-maximal state w.

2. Suppose thatM is also flat. For each w ∈ W, if w is �E-maximal, then w ∈
⋂
X for some

scenario X ⊆ E. Furthermore, if w is �E maximal, then E[w] is a scenario.

3. Using items 1 and 2 to prove that [A]〈�〉[�]ϕ → [B]ϕ is valid on extended uniform
evidence models (that is, ifM = 〈W,E,V〉 is a uniform evidence model, then the formula
is valid onMM). Furthermore, over the class of models that are, moreover, flat, the formula
[A]〈�〉[�]ϕ↔ [B]ϕ is valid (cf. Fact 2.97).

Consult van Benthem et al. (2014) for the precise relationship between evidence mod-
els, extended evidence models and plausibility models.

2.6.2 The Normal Translation

In this section, I explore a deeper connection between neighborhood models and relational
models. The key observation is that neighborhood models are just a special type of
relational models.

The states in the these special relational models are divided into two sorts: the elements
of a non-empty set W and the subsets from W. For any set W, let W◦ = W ∪ ℘(W). (It
is also important to assume that W ∩ ℘(W) = ∅.) There are two natural relations on W◦

corresponding to the “element of” and “not element of” relations between states and
subsets. It will be convenient to use the converse of the “(not) element of” relation:

• R3 ⊆ ℘(W) ×W with R3 = {(U,w) | w ∈W, U ∈ ℘(W), w ∈ U}.

• R= ⊆ ℘(W) ×W with R= = {(U,w) | w ∈W, U ∈ ℘(W), w < U}.
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Two remarks about the above relations are in order. First, R= is not the complement
of R3 (with respect to W◦ × W◦). That is R= , (W◦ × W◦) − R3. This is, because, for
example, (w, v) ∈ (W◦ ×W◦)−R3, where w, v ∈W, but (w, v) < R=. Of course, it is true that
R= = (℘(W) ×W) − R3.

Second, there are other relations that can be studied in this context. For instance, one
can include the subset relation R⊆ ⊆ ℘(W)×℘(W) with R⊆ = {(U,V) |U,V ∈ ℘(W), U ⊆ V}
in the model. A relational-neighborhood model includes a third relation between states W
and ℘(W) (which is intended to represent a neighborhood function).

Definition 2.104 (Relational-Neighborhood Model) Suppose that W is a non-empty set
of states and At is a set of atomic propositions. A relational neighborhood model on W
is a tuple 〈W◦,RN,R3,R=,V〉, where W◦ = W ∪℘(W), R ⊆W ×℘(W), R3 ⊆ ℘(W)×W with
R3 = {(U,w) | w ∈ W, U ∈ ℘(W), w ∈ U}, R= ⊆ ℘(W) ×W with R= = {(U,w) | w ∈ W,U ∈
℘(W),w < U}, and V : At→ ℘(W) is a valuation function. /

The definition of the valuation function in a relational-neighborhood function high-
lights the two-sorted aspect of these models. Since the range of the valuation function
is the set of states W, the atomic propositions (and, hence, all non-modal formulas) are
“state formulas” that can express properties of the set of states W. 22 This also means
that atomic propositions are interpreted as false at all subsets of W. 23 A more standard
approach would be to let V : At→ ℘(W◦), allowing atomic propositions to be interpreted
at both states and subsets.

There is a natural modal language associated with the above models. Let L2 be the
smallest set of formulas generated by the following grammar:

p | ¬ϕ | ϕ ∧ ψ | [3]ϕ | [=]ϕ | [R]ϕ

where p ∈ At. Suppose that M = 〈W◦,R3,R=,R,V〉 is a relational-neighborhood model
with W◦ = W ∪ ℘(W). Truth of formulas ϕ ∈ L2 at elements x ∈W◦ is defined as follows:

• M, x |= p iff x ∈W and x ∈ V(p).

• M, x |= ¬ϕ iff x ∈W andM, x 6|= ϕ.

• M, x |= ϕ ∧ ψ iff x ∈W,M, x |= ϕ, andM, x |= ψ.

• M, x |= [R]ϕ iff x ∈W and for all y ∈W◦, if u R y, thenM, y |= ϕ.

• M, x |= [3]ϕ iff x ∈ ℘(W) and for all y ∈W◦, if x R3 y, thenM, y |= ϕ.

• M, x |= [=]ϕ iff x ∈ ℘(W) for all y ∈W◦, if x R= y, thenM, y |= ϕ.

22This means that atomic propositions are nominals (cf. Section 3.1 and Areces and ten Cate (2007)) with
respect to elements in the domain of the model that correspond to to subsets.

23Another option would be to let atomic propositions be undefined at all U ∈ ℘(W).
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According to the above definition, subsets of W behave similarly to impossible worlds
(cf. Section 2.2.4) since all non-modal formulas and formulas of the form [R]ϕ are false at
these points. This means that, for instance, p ∨ ¬p is false at points X ∈ ℘(W). In order
to express the two-sorted nature of the states in a relational-neighborhood model, it is
sometimes convenient to include a special proposition St with the fixed interpretation
V(St) = W. Given the above remark, if p ∈ At, then we can define St to be p ∨ ¬p.

It is not hard to see that every neighborhood model can be transformed into a
relational-neighborhood model. Suppose thatM = 〈W,N,V〉 is a neighborhood model.
The associated relational-neighborhood model is M◦ = 〈W◦,R3,R=,RN,V◦〉, where, for
all p ∈ At, V◦(p) = V(p) and

• RN = {(w,U) | w ∈W, U ∈ ℘(W),U ∈ N(w)}.

To simplify the notation, I write ‘[N]ϕ’ instead of ‘[RN]ϕ’.
The main observation of this section is that there is a translation of the basic modal

language L into L2 that preserves truth.

Definition 2.105 (Normal Translation) The normal translation of the basic modal lan-
guage L is a function nt : L → L2 defined by induction on the structure of ϕ ∈ L:

• nt(p) = p.

• nt(¬ϕ) = ¬nt(ϕ).

• nt(ϕ ∧ ψ) = nt(ϕ) ∧ nt(ϕ).

• nt(�ϕ) = 〈N〉([3]nt(ϕ) ∧ [=]¬nt(ϕ)). /

The next proposition shows that the translation works as expected.

Proposition 2.106 Suppose thatM = 〈W,N,V〉 is a neighborhood model. For all ϕ ∈ L, for all
w ∈W,

M,w |= ϕ iff M◦,w |= nt(ϕ).

Proof. The proof is by induction on ϕ ∈ L. The proof for the base case and the boolean
connectives is straightforward. I give the proof only for the case in which ϕ is of the form
�ψ. Note that the induction hypothesis is as follows:

IH for all w ∈W,M,w |= ψ iffM◦,w |= nt(ψ).

Suppose that w ∈ W withM,w |= �ψ. We must show thatM◦,w |= nt(�ψ). That is,
we must show thatM◦,w |= 〈N〉([3]nt(ψ) ∧ [=]¬nt(ψ)). Suppose that X = [[ψ]]M. By the
construction ofM◦, since [[ψ]]M ∈ N(w), we have that w RN X. Thus, we must show that
M
◦,X |= [3]nt(ψ) ∧ [=]nt(ψ). The induction hypothesis implies that
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(∗) for all v ∈W, v ∈ [[ψ]]M iffM◦, v |= nt(ψ).

By the construction of M◦, we have for all x ∈ W ∪ ℘(W), X R3 x iff x ∈ W and x ∈ X.
Furthermore, by (∗), for all v ∈ W, if v ∈ X, then M◦, v |= nt(ψ). This implies that
M
◦,X |= [3]nt(ψ). A similar argument shows that M◦,X |= [=]¬nt(ψ). Thus, M◦,w |=

〈N〉([3]nt(ψ) ∧ [=]¬nt(ψ)), as desired.
Suppose thatM◦,w |= nt(�ψ). That is, suppose that

M
◦,w |= 〈N〉([3]nt(ψ) ∧ [=]¬nt(ψ)).

Then, there is some x ∈ W ∪ ℘(W) such that w RN x andM◦, x |= [3]nt(ψ) ∧ [=]¬nt(ψ). By
construction of M◦, since w RN x, x = X ⊆ W with X ∈ N(w). Thus, in order to show
thatM,w |= �ψ, we must show that X = [[ψ]]M. Suppose that v ∈ X. By the definition
of R3, we have X R3 v (and v ∈ W). SinceM◦,X |= [3]nt(ψ), we haveM◦, v |= nt(ψ). By
the induction hypothesis,M, v |= ψ. Hence, X ⊆ [[ψ]]M. Conversely, suppose that v < X.
Then, by the definition of R=, we have X R= v (and v ∈ W). Since M◦,X |= [=]¬nt(ψ),
we have M◦, v |= ¬nt(ψ). Since M◦, v 6|= nt(ψ) and v ∈ W, by the induction hypothesis,
M, v 6|= ψ. Hence, [[ψ]]M ⊆ X. Therefore, since X ∈ N(w) and X = [[ψ]]M, we have that
M,w |= �ψ, as desired. qed

To illustrate the above translation, let M = 〈W,N,V〉 be a neighborhood model with
W = {w, v}, N(w) = {{w}, {v}}, N(v) = {∅}, and V(p) = {w}. The relational modelM◦ is given
below (the solid arrows correspond to the RN relation; the dashed arrows correspond to
the R3 relation; and the dotted arrows correspond to the R= relation). To simplify the
comparison between the models, I also draw the neighborhood modelM.

w v

{w} {v} ∅

M

w v

{w} {v}

{w, v}

∅ RN:
R3:
R=:

M
◦

Note thatM,w |= �p andM, v |= �⊥. As the reader is invited to check, the following is
statements are true:

• M
◦,w |= 〈N〉([3]p ∧ [=]¬p) andM◦, v 6|= 〈N〉([3]p ∧ [=]¬p); and

• M
◦, v |= 〈N〉([3]⊥ ∧ [=]>) andM◦,w 6|= 〈N〉([3]⊥ ∧ [=]>).
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Exercise 58 Find the normal translations of: �(p ∨ ¬p), �p ∨ �¬p, and ¬�p ∨ �p.

The normal translation can be simplified when the neighborhood models are closed
under supersets.

Definition 2.107 (Monotonic translation) The monotonic translation of the basic modal
language L is a function mt : L → L2 defined by induction on L, where the base case
and Boolean connectives are as in Definition 2.105, and the modal clause is:

mt(�ϕ) = 〈N〉[3]mt(ϕ). /

Proposition 2.108 Suppose that M = 〈W,N,V〉 is a monotonic neighborhood model. For all
ϕ ∈ L, for all w ∈W,

M,w |= ϕ iff M◦,w |= mt(ϕ)

Exercise 59 Prove Proposition 2.108 (it is similar to the proof of Proposition 2.106).

Kracht and Wolter (1999) use the normal and monotonic translations to show that all non-
normal modal logics can be simulated by a (two-sorted) normal modal logic (cf. Gasquet
and Herzig, 1996).

Exercise 60 (Kracht and Wolter, 1999) Use the fact the satisfiability problem for multi-modal
normal modal logic is decidable and the above translation to prove that the satisfiability problem
for the non-normal modal logic E is decidable. What can be concluded about the complexity of the
satisfiability problem for E?

Exercise 61 Suppose thatM1 andM2 are monotonically-bisimilar neighborhood models (Defini-
tion 2.2). Does this imply thatM◦1 andM◦2 are relationally-bisimilar (cf. Definition A.12)? Is the
converse true (i.e., ifM◦1 andM◦2 are relationally-bisimilar, thenM1 andM2 are montonically-
bisimilar)? Answer the same questions for neighborhood models that are not monotonic.

2.6.3 The Standard Translation

Building on the normal translation from the previous section and the well-known standard
translation of normal modal logic into first-order logic, in this section, I show that non-
normal modal logic can be viewed as a fragment of first-order logic. In the remainder
of this section, I assume that the reader is familiar with first-order logic (specifically, I
assume familiarity with the syntax and semantics of first-order logic, the notion of an
isomorphism and basic model-theoretic results). Consult Enderton (2001) for the necessary
background.

I start by defining a first-order language that can be interpreted on relational-neighborhood
models (Definition 2.104). It will be convenient to work with a two-sorted first-order lan-
guage. Formally, there are two sorts, {w,n}. Terms of the first sort (w) are intended to
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represent states, whereas terms of the second sort (n) are intended to represent neighbor-
hoods (i.e., subsets of sort w). I assume that there are countable sets of variables of each
sort. To simplify notation, I use the following conventions: x, y, x′, y′, x1, y2, . . . denote
variables of sort w (world variables), and u, v,u′, v′,u1, v1, . . . denote variables of sort n
(neighborhood variables).

The language is built from a signature containing a unary predicate Pi (of sort w) for
each i ∈N, a binary relation symbol N relating elements of sort w to elements of sort n, and
a binary relation symbol E relating elements of sort n to elements of sort w. The intended
interpretation of xNu is “u is a neighborhood of x”, and the intended interpretation of
uEx is “x is an element of u”. The language Lfo is built from the following grammar:

x = y | u = v | Pix | xNu | uEx | ¬ϕ | ϕ ∧ ψ | ∃xϕ | ∃uϕ

where i ∈ N; x and y are state variables; and u and v are neighborhood variables. The
usual abbreviations (e.g. ∀ for ¬∃¬) apply. Note that ∃xϕ means that “there is an element
of sort w that satisfies ϕ” (similarly, ∃uϕ means that “there is an element of sort n that satisfies
ϕ”).

Formulas of Lfo are interpreted in two-sorted first-order structures M = 〈D, {Pi | i ∈
N},R,E〉, where D = Dw

∪ Dn (and Dw
∩ Dn = ∅), each Pi ⊆ Dw, R ⊆ Dw

× Dn and
E ⊆ Dn

×Dw. The relation R is the interpretation of the binary relational symbol N.24 As
usual, the equality symbol is always interpreted as equality on the appropriate domain.
In addition, the usual definitions of free and bound variables apply. Truth of sentences
(formulas with no free variables) ϕ ∈ Lfo in a structure M (denoted M  ϕ) is defined as
expected. If x is a free state variable in ϕ (denoted ϕ(x)), then M  ϕ[w] means that ϕ is
true in M when w ∈ Dw is assigned to x. Note that M  ∃xϕ iff there is an element w ∈ Dw

such that M |= ϕ[w]. If Γ is a set of Lfo-formulas, and M is an Lfo-model, then M  Γ
means that for all γ ∈ Γ, M  γ. Given a class K of Lfo-models, the semantic consequence
relation over K is denoted K. That is, for a set of Lfo-formulas Γ ∪ {ϕ}, Γ K ϕ, if for all
M ∈ K, M  Γ implies that M  ϕ.

The basic modal language and neighborhood models can be translated into the first-
order setting as follows.

Definition 2.109 (First-Order Translation of a Neighborhood Model) Suppose
that M = 〈W,N,V〉 is a neighborhood model. The first-order translation of M is the
structureM• = 〈D, {Pi | i ∈N},RN,R3〉, where

• D = Dw
∪Dn with Dw = W, Dn = N[W] =

⋃
w∈W N(w).

• Pi = V(pi) for each pi ∈ At.

• RN = {(w,X) | w ∈ Dw,X ∈ N(w)}.

• R3 = {(X,w) | w ∈ Dw,w ∈ X}. /

24I am not using ‘N’ since that is used to denote neighborhood functions.
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Definition 2.110 (Standard Translation) The standard translation of the basic modal lan-
guageL(At) (where At = {pi | i ∈N} is a countable set of atomic propositional variables) is
a family of functions stx : L(At)→ Lfo defined as follows: stx(pi) = Pix, stx(¬ϕ) = ¬stx(ϕ),
stx(ϕ ∧ ψ) = stx(ϕ) ∧ stx(ψ), and

stx(�ϕ) = ∃u(xNu ∧ (∀y(uEy↔ sty(ϕ))) /

Exercise 62 Prove that the standard translation preserves truth. That is, prove the following
lemma.

Lemma 2.111 Let M = 〈W,N,V〉 be a neighborhood model and ϕ ∈ L. For each w ∈ W,
M,w |= ϕ iffM• � stx(ϕ)[w].

So, every neighborhood model can be associated with an Lfo-model that preserves
truth of the basic modal language (using the standard translation). However, it is not the
case that every Lfo-structure is the translation of a neighborhood model. 25 Fortunately,
it is possible to axiomatize the class of translations of neighborhood models. Let N =
{M | M � M• for some neighborhood modelM}, where M � N means that there is an
isomorphism26 between M and N, and let NAX be the following axioms:

(A1) ∃x(x = x)

(A2) ∀u∃x(xNu)

(A3) ∀u∀v(¬(u = v)→ ∃x((uEx ∧ ¬vEx) ∨ (¬uEx ∧ vEx)))

It is not hard to see that ifM is a neighborhood model, thenM•  NAX. The next result
states that NAX completely characterizes the class N.

Proposition 2.112 Suppose M is an Lfo-model and M  NAX. Then, there is a neighborhood
model M• such that M � (M•)•.

Proof. Let M = 〈Dw
∪Dn, {Pi | i ∈ ω},R,E〉 be an Lfo-model such that M  NAX. We will

construct a neighborhood model M• = 〈W,N,V〉 such that M � (M•)•. First, define a map
ν : Dn

→ ℘(Dw) by ν(u) = {w ∈ Dw
| uEw} and let W = Dw. Since M  (A1), W , ∅. Now

define for each w ∈ W and each X ⊆ W: X ∈ N(w) iff there is a u ∈ Dn such that sNu and
X = ν(u), and define for all i ∈ N, V(pi) = {w ∈ W | M |= Pi[w]}. Then, M• is clearly a
well-defined neighborhood model. The proof is concluded if we can show that the map

f : Dw
∪ Dn

→W ∪
⋃
w∈W

N(w),

25This should be contrasted with the standard translation of relational models for normal modal logic.
Consult Blackburn et al. (2001), Section 2.4, for details.

26In this context, an isomorphism between Lfo-models M = 〈D, {Pi | i ∈ N},R,E〉 and M′ = 〈D′, {P′i | i ∈
N},R′,E′〉 is a 1-1 and onto function f : D → D′ satisfying the structural conditions: w ∈ Pi iff f (w) ∈ P′i ,
w R u iff f (w) R′ f (u) and u E w iff f (u) E′ f (w).
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defined as f (w) = w for w ∈ Dw and f (u) = ν(u) for u ∈ Dn, is an isomorphism from M to
(M•)• = 〈W ∪N[W], {P′i | i ∈ ω},RN,R3〉 (cf. Definition 2.109).

First, it follows directly from M  (A3), that ν is injective. Second, by the definition
of ν and the (·)•-construction, the range of ν, denoted rng(ν), contains

⋃
w∈Dw ν(w) =⋃

w∈W N(w). The inclusion rng(ν) ⊆
⋃

w∈W N(w) follows from the assumption that M 
(A2) since this implies that, for every u ∈ Dn, there is a w ∈ Dw such that ν(u) ∈ N(w). The
structural conditions follow directly by construction: For all i ∈ N, w ∈ Pi iff w ∈ V(pi) iff
w ∈ P′i . Similarly, for all w ∈ Dw and all u ∈ Dn: w R u iff ν(u) ∈ N(w) iff w RN ν(u), and
u E w iff w ∈ ν(u) iff ν(u) R3 w. qed

Thus, in a precise way, models in N can be viewed as neighborhood models. This
means that (monotonic) bisimulations, bounded morphisms, disjoint unions, and other
model constructions on neighborhood models (cf. Section 2.1) can be applied to models in
N. For instance, anLfo-formula α(x) is said to be invariant under behavioral equivalence
(Definition 2.12) on the class N iff for all w-elements w from M and w-elements v from
N, if M•,w and N•, v are behaviorally equivalent, then M  α[w] iff N  α[v] (invariance
under monotonic bisimulations can be defined similarly). Furthermore, Proposition 2.112
implies that we can work relative to N while still preserving nice first-order properties
such as compactness and the existence of countably saturated models.

Using the translation defined in this section, I can clarify the relationship between
non-normal modal logic and first-order logic. For normal modal logic, the seminal van
Benthem characterization theorem (see Blackburn et al. (2001, Section 2.4, for details)) shows
that normal modal logic is the bisimulation invariant fragment of first-order logic (with
respect to relational models). Pauly (1999) generalized this result to monotonic modal
logics, showing that, over the class of Nmon of Lfo-models isomorphic to monotonic
neighborhood models, α(x) is equivalent to a translation of a basic modal formula iff α(x)
is invariant under monotonic bisimulations (see, also, Hansen, 2003). A similar result can
be shown for all non-normal modal logics using the notion of behavioral equivalence.

Theorem 2.113 (Hansen, Kupke and Pacuit, 2009) Suppose that N is the class ofLfo-structures
isomorphic to the translation of neighborhood models and that α(x) is aLfo-formula. Then, α(x) is
equivalent to a translation of a basic modal formula (with respect to N) iff α(x) is invariant under
behavioral equivalence.

Consult Hansen et al. (2009), Hansen (2003) and Kracht and Wolter (1999) for further
model-theoretic results about non-normal modal logic.
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Chapter3
Richer Languages

In the previous chapters, we focused on the basic propositional modal language in-
terpreted on neighborhood structures. One exception was the logic of evidence and
belief introduced in Section 1.4.4. This logic is interesting, in part, because it includes a
non-normal modality (the evidence modality) and two normal modalities (the universal
modality and the belief modality). In this final chapter, we will look more systemati-
cally at different extensions of the basic modal language interpreted on neighborhood
structures.

3.1 Universal Modality and Nominals

A very useful and well-studied extension of the basic modal language includes the uni-
versal modality (Goranko and Passy, 1992) and nominals (Areces and ten Cate, 2007). We
have already studied logics with the universal modality. Nominals provide additional
expressive power to “name” possible worlds (see Areces and ten Cate (2007) for a dis-
cussion). Recall that At is the set of atomic propositions, and let Nom be an additional
set of atomic propositions (assume that At ∩ Nom = ∅). Elements of Nom are called
nominals. The key feature of nominals is that they are true at exactly one world—i.e.,
they “name” possible worlds in a neighborhood model. Let LNA be the smallest set of
formulas generated by the following grammar:

p | i | ¬ϕ | (ϕ ∧ ψ) | �ϕ | [A]ϕ

where p ∈ At and i ∈ Nom. Let LA be the fragment of LNA without nominals. A
neighborhood model with nominals is a tuple 〈W,N,V〉, where 〈W,N〉 is a neighborhood
frame, and V : At ∪ Nom→ ℘(W) is a valuation function satisfying the property:

• For all i ∈ Nom, |V(i)| = 1.
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To simplify notation, I use i, j, k, . . . to denote nominals and write V(i) = w when V(i) = {w}.
The interpretation of the Boolean connectives and the modal operator is as usual (see
Definition 1.15). I only give the definition of truth for nominals and the modalities. Let
M = 〈W,N,V〉 be a neighborhood function with nominals. Then,

• M,w |= i iff i ∈ Nom and V(i) = w

• M,w |= [A]ϕ iff for all v ∈W,M, v |= ϕ

• M,w |= �ϕ iff [[ϕ]]M ∈ N(w)

It is well-known that the universal modality cannot be expressed in the basic modal
language over relational models. A similar argument shows that the universal modality
cannot be expressed in the basic modal language over neighborhood models.

Exercise 63 Use the definition of a disjoint union of models (Definition 2.14) to prove that the
basic modal language cannot express the universal modality.

There are two natural questions that one can ask when studying extensions of the basic
modal language. First, do various properties of the logical system (e.g., completeness,
decidability, complexity of the satisfiability problem, etc.) also apply to the extended
language? I do not have the space to discuss all aspects of this question, so, instead,
I focus on only two issues. In the next section, I show that strong completeness for
monotonic modal logics (Theorem 2.66) can be extended to languages with the universal
modality. Second, what more can be expressed in the language? Again, I do not have
the space to discuss the full expressive power of the modal languages with nominal
and universal modality on neighborhood structures. Consult ten Cate et al. (2009) for
a comprehensive discussion of expressivity of this language on topological models. In
Section 3.1.2, I discuss a fascinating result showing that modal languages with nominals
can express that a neighborhood frame is augmented.

3.1.1 Non-Normal Modal Logic with the Universal Modality

The method for proving completeness, discussed in Section 2.3.1, can be adapted to
deal with logics that include both normal and non-normal modalities. In this section, I
prove completeness for a monotonic modal logic with the universal modality. Since I am
restricting attention to monotonic neighborhoods, I will use 〈 ] to denote the modality
(cf. the discussion in Section 1.2.2). In this case, the language LA is the smallest set of
formulas generated by the following grammar:

p | ¬ϕ | (ϕ ∧ ψ) | 〈 ]ϕ | [A]ϕ

where p ∈ At. The additional Boolean connectives are defined as usual. Furthermore, let
[ 〉ϕ be defined as ¬〈 ]¬ϕ and 〈A〉ϕ be defined as ¬[A]¬ϕ. The interpretation of formulas
fromLA is provided in the previous section. As a reminder, the truth clause neighborhood
modality is:
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• M,w |= 〈 ]ϕ iff there exists X ∈ N(w) such that X ⊆ [[ϕ]]M.

Let EMA be the logic consisting of the following axiom schemes and rules:

(AK) [A](ϕ→ ψ)→ ([A]ϕ→ [A]ψ)

(AT) [A]ϕ→ ϕ

(A4) [A]ϕ→ [A][A]ϕ

(A5) 〈A〉ϕ→ [A]〈A〉ϕ

(ANec) From ϕ infer [A]ϕ

(〈 ]RM) From ϕ→ ψ infer 〈 ]ϕ→ 〈 ]ψ

(〈 ]Cons) ¬〈 ]⊥

(AN) [A]ϕ→ 〈 ]ϕ

(Pullout) 〈 ](ϕ ∧ [A]ψ)↔ (〈 ]ϕ ∧ [A]ψ)

Lemma 3.1 The axiom (Pullout) is valid on any neighborhood modelM = 〈W,N,V〉 in which,
for all w ∈W, ∅ < N(w).

Proof. As the reader is invited to verify, for any formula α of LA and any neighborhood
modelM = 〈W,N,V〉, we have that

[[[A]α]]M =

W [[α]]M = W
∅ [[α]]M , W

LetM = 〈W,N,V〉 be a neighborhood model such that for all w ∈ W, ∅ < N(w). We must
show that [[〈 ](ϕ ∧ [A]ψ)]]M = [[〈 ]ϕ ∧ [A]ψ]]M. There are two cases:

1. [[ψ]]M = W. Then, [[[A]ψ]]M = W. Since [[ϕ]]M ⊆ W = [[[A]ψ]]M and [[〈 ]ϕ]]M ⊆ W =
[[[A]ψ]]M, we have that (i) [[ϕ]]M ∩ [[[A]ψ]]M = [[ϕ]]M and (ii) [[〈 ]ϕ]]M ∩ [[[A]ψ]]M =
[[〈 ]ϕ]]M. Then,

[[〈 ](ϕ ∧ [A]ψ)]]M = {w | there is a X ∈ N(w) such that X ⊆ [[ϕ ∧ [A]ψ]]M}
= {w | there is a X ∈ N(w) such that X ⊆ [[ϕ]]M ∩ [[[A]ψ]]M}
= {w | there is a X ∈ N(w) such that X ⊆ [[ϕ]]M}
= [[〈 ]ϕ]]M
= [[〈 ]ϕ]]M ∩ [[[A]ψ]]M
= [[〈 ]ϕ ∧ [A]ψ]]M

2. [[ψ]]M , W. Then, [[[A]ψ]]M = ∅. This implies that [[ϕ ∧ [A]ψ]]M = [[〈 ]ϕ ∧ [A]ψ]]M =
∅. Since, ∅ < N(w) for any w, we have that [[〈 ](ϕ ∧ [A]ψ)]]M = ∅ = [[〈 ]ϕ ∧ [A]ψ]]M.
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qed

Exercise 64 Prove that (AN) is valid on any neighborhood modelM = 〈W,N,V〉 in which for all
w ∈W, W ∈ N(w).

The completeness proof combines ideas from the previous section and the standard
method for proving completeness with respect to relational frames. Let FEMA = {F | F =
〈W,N〉with for all w ∈W, ∅ < N(w) and W ∈ N(w)}. Recall that MEMA is the set of maxi-
mally EMA-consistent sets. Finally, suppose that RA is a relation on MEMA defined as
follows:

Γ RA ∆ iff ΓA = {ϕ | [A]ϕ ∈ Γ} ⊆ ∆.

The following Lemma is a consequence of the fact that EMA contains the axiom schemes
(AT), (A4) and (A5) (see Blackburn et al., 2001, for details).

Lemma 3.2 The relation RA is an equivalence relation.

The proof of this standard fact about modal logic is left to the reader. Let Γ be a maximally
consistent set. For any maximally consistent set Γ ∈ MEMA, construct a canonical model
M

Γ = 〈WΓ,NΓ,VΓ
〉 as follows:

• WΓ = RA(Γ) = {∆ | Γ RA ∆};

• For each ∆ ∈WΓ, NΓ(∆) = {|ϕ|EMA ∩WΓ
| 〈 ]ϕ ∈ ∆}; and

• For all p ∈ At, VΓ(p) = {∆ ∈WΓ
| p ∈ ∆} = |p|EMA ∩WΓ.

Before proving a Truth Lemma for this canonical model, we need a preliminary result
about the logic EMA.

Lemma 3.3 Suppose that Γ is a set of formulas. If Γ, ϕ `EMA ψ, then [A]Γ, 〈 ]ϕ `EMA 〈 ]ψ,
where [A]Γ = {[A]ϕ | ϕ ∈ Γ}.

Proof. Without loss of generality, we can replace Γ with a single formula γ (why?).
Suppose that γ, ϕ `EMA ψ. Then, by the definition of a deduction, we have that `EMA
(γ ∧ ϕ) → ψ. Since [A]γ → γ is an instance of (AT), we also have `EMA ([A]γ ∧ ϕ) → ψ.
Thus, by (〈 ]RM), `EMA 〈 ]([A]γ∧ϕ)→ 〈 ]ψ. Using the axiom (Pullout), we have that `EMA
([A]γ∧〈 ]ϕ)→ 〈 ]ψ. By the definition of a deduction, this means that [A]γ, 〈 ]ϕ `EMA 〈 ]ψ,
as desired. qed

Lemma 3.4 (Truth Lemma) Suppose that Γ is a maximally consistent set. For any formula
ϕ ∈ LMA,

[[ϕ]]MΓ = |ϕ|EMA ∩ RA(Γ).
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Proof. Suppose that Γ is a maximally consistent set andMΓ is the canonical model for
Γ. The proof is by induction on the structure of ϕ ∈ LMA. The base case is a direct
consequence of the definition of the canonical valuation:

[[p]]MΓ = VΓ(p) = |p|EMA ∩ RA(Γ).

The proof for the Boolean connectives are straightforward. I give the details only for the
modal operators:

• [[〈 ]ϕ]]MΓ = |〈 ]ϕ|EMA ∩ RA(Γ): Suppose that ∆ ∈ |〈 ]ϕ|EMA ∩ RA(Γ). Then, 〈 ]ϕ ∈ ∆
and ∆ ∈ RA(Γ). By construction, |ϕ| ∩ RA(Γ) ∈ NΓ(∆). Hence, by the induction
hypothesis, [[ϕ]]MΓ = |ϕ| ∩ RA(Γ) ∈ NΓ(∆). Thus, ∆ ∈ [[〈 ]ϕ]]MΓ .

Suppose that ∆ < |〈 ]ϕ|EMA ∩ RA(Γ). If ∆ < RA(Γ), then obviously ∆ < [[〈 ]ϕ]]MΓ . So,
assume for the remainder of the proof that ∆ ∈ RA(Γ). Then, 〈 ]ϕ < ∆. We must
show thatM,∆ 6|= 〈 ]ϕ. That is, we must show that for all X ∈ NΓ(∆), X * [[ϕ]]MΓ .
This is a consequence of the following claim:

Claim. For each ψ with 〈 ]ψ ∈ ∆, there is a maximally consistent set ∆′ such that
∆′ ∈ |ψ|EMA ∩ RA(Γ), but ϕ < ∆′.

Proof of claim. Let ∆′0 = ΓA
∪ {¬ϕ} ∪ {ψ}. First of all, since 〈 ]ϕ < ∆, using the

axiom scheme (AN), we have Aϕ < ∆. Thus, since ∆ ∈ RA(Γ), Aϕ < Γ (why?).
Therefore, ϕ < ΓA. We now show that ∆′0 is consistent. Suppose not. Then,
ΓA
∪ {¬ϕ} ∪ {ψ} `EMA ⊥. Using standard propositional reasoning, ΓA

∪ {ψ} `EMA ϕ.
By Lemma 3.3, [A]ΓA

∪ {〈 ]ψ} `EMA 〈 ]ϕ. Since [A]ΓA
⊆ ΓA

⊆ ∆ and 〈 ]ψ ∈ ∆, we
have 〈 ]ϕ ∈ ∆, which is a contradiction. Thus, ∆′0 is consistent. By Lindenbaum’s
Lemma1, there is a maximally consistent set ∆′ such that ∆′0 ⊆ ∆′. Therefore,
∆′ ∈ |ψ|EMA ∩ RA(Γ) but ϕ < ∆′. This completes the proof of the Claim.

• [[[A]ϕ]]MΓ = |[A]ϕ|EMA ∩ RA(Γ): Suppose that ∆ ∈ |[A]ϕ|EMA ∩ RA(Γ). Then, in
particular, [A]ϕ ∈ ∆. Let ∆′ ∈ RA(Γ). Then, since ∆ ∈ RA(Γ), we have ∆ RA ∆′.
Hence, since [A]ϕ ∈ ∆ and ∆A

⊆ ∆′, we have ϕ ∈ ∆′. Thus, RA(Γ) ⊆ |ϕ|EMA. Then,
by the induction hypothesis, [[ϕ]]MΓ = |ϕ|AMA∩RA(Γ) = RA(Γ). Thus, ∆ ∈ [[[A]ϕ]]MΓ .

Suppose that ∆ < |[A]ϕ|EMA ∩ RA(Γ). Again, we can assume that ∆ ∈ RA(Γ). Then,
[A]ϕ < ∆. We must show that there is a ∆′ ∈ RA(Γ) such that ϕ < ∆′. Let ∆′0 =

ΓA
∪ {¬ϕ}. We claim that ∆′0 is consistent. Suppose not. Then, ΓA

∪ {¬ϕ} `EMA ⊥.
Using standard propositional reasoning, there are formulas α1, . . . , αn ∈ ΓA such that
`EMA (α1 ∧ · · · ∧ αn)→ ϕ. Using (ANec) and (AK), standard modal reasoning gives
us `EMA ([A]α1∧· · ·∧[A]αn)→ [A]ϕ. Hence, ([A]α1∧· · ·∧[A]αn)→ [A]ϕ ∈ ∆. Since,

1It should also be verified that Lindenbaum’s Lemma holds for EMA. I leave the verification of this to
the reader.
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for each i = 1, . . . ,n, [A]αi ∈ Γ, we conclude that [A]αi ∈ ∆ for each i = 1, . . . ,n. Thus,
[A]ϕ ∈ ∆, which is a contradiction. Therefore, ∆′0 is consistent. By Lindenbaum’s
Lemma, there is a maximally EMA-consistent set ∆′ such that ∆′0 ⊆ ∆′. Then,
∆′ < |ϕ|EMA ∩ RA(Γ) = [[ϕ]]MΓ . Thus, ∆ < [[[A]ϕ]]MΓ .

qed

Strong completeness now follows by the standard argument.

Theorem 3.5 The logic EMA is sound and strongly complete with respect to class of consistent,
monotonic neighborhood frames.

3.1.2 Characterizing Augmented Frames

Recall that a frame F = 〈W,N〉 is augmented provided that for each w ∈ W, N(w) is non-
empty, N(w) is a filter and

⋂
N(w) ∈ N(w). This last property (that the neighborhoods

contain its core) is not expressible in the basic modal language.

Exercise 65 Use the definition of a monotonic bisimulation to prove that, over the class of frames
that are filters, the basic modal language cannot express that a neighborhood frame is augmented.

Interestingly, ten Cate and Litak (2007) showed that within the class of neighborhood
frames that are filters, there is a sense in which the augmented frames can be defined. They
use a somewhat non-standard approach and define the class of augmented frames using
a rule. To do this, we need to understand the notion of admitting a rule. A rule of inference
is admitted in a logic L if adding it to the logic does not add any new theorems. There is
an important distinction between deriving a rule and admitting a rule. A rule is derivable
if the consequent can be derived in the logic from the premises. To illustrate, consider the
rule: from �ϕ infer ϕ. This rule obviously cannot be derived in K, but it is admitted, since
it does not add any new theorems to K. There is a semantic characterization of admitting
a rule that is needed to state the main theorem of this section.

Definition 3.6 (Admitting a Rule) Suppose thatM = 〈W,N,V〉 is a neighborhood model
with a state satisfying a formula ϕ. A modelM′ ϕ-extends the modelM provided that
M
′ = 〈W,N,V′〉, where V′ is the same as V for all atomic propositions and nominals

that occur in ϕ. A class of frames F admits a rule provided that every model based on
a frame from F that falsifies the consequent γ can be γ-extended to a model that falsifies
the premises. /

It turns out that a rule, familiar in the literature on hybrid logic (Areces and ten Cate,
2007), can be used to characterize augmented frames:

(BG)
〈A〉(i ∧^ j)→ 〈A〉( j ∧ ϕ)

〈A〉(i ∧ �ϕ)

for i , j and j not occurring in ϕ.
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Proposition 3.7 (ten Cate and Litak, 2007) Let F = 〈W,N〉 be a neighborhood frame such
that for all w ∈ W, N(w) is a non-trivial filter. Then, F contains its core (i.e., for all w ∈ W,⋂

N(w) ∈ N(w)) if, and only if, F admits the (BG) rule.

Proof. Suppose that F = 〈W,N〉 is an augmented frame. That is, for all w ∈ W, N(w) is a
filter and

⋂
N(w) ∈ N(w). Suppose thatM = 〈W,N,V〉 is a model that falsifies 〈A〉(i∧�ϕ).

Then, there is a w ∈ W such that V(i) = w and M,w 6|= �ϕ. Thus, for each X ∈ N(w),
X , [[ϕ]]M. Since N(w) is a filter and

⋂
N(w) is the smallest element of N(w) (according

to the subset relation), this means that there must be a v ∈
⋂

N(w) such that v < [[ϕ]]M.
Let V′ : At ∪ Nom → ℘(W) be a valuation that is exactly like V except V′( j) = v, where j
is a nominal that does not occur in ϕ and j , i. Note that since v <

⋂
N(w) and N(w) is

closed under supersets, we have W − {v} ∈ N(w). Now,M′ = 〈W,N,V′〉 is a model that
〈A〉(i ∧ �ϕ)-extendsM falsifying the antecedent:

1. M′,w |= 〈A〉(i ∧ ^ j): This follows from the fact that W − {v} ∈ N(w) and [[^ j]]M′ =
{x |W − {v} < N(x)}; but

2. M′,w 6|= 〈A〉( j ∧ ϕ): By construction V′( j) = v < [[ϕ]]M = [[ϕ]]M′ (the latter follows
from the fact that V and V′ agree on all formulas not involving j).

Suppose that F = 〈W,N〉 is not augmented. Then, there is a w ∈ W such that⋂
N(w) < N(w). Since N(w) is a filter, this means that for each X ∈ N(w) there is a

neighborhood X′ ∈ N(w) such that X * X′. Thus, for each X ∈ N(w), we have

g(X) = {y | y ∈ X, and there is an X′ ∈ N(w) such that y < X′} , ∅.

Thus, by the Axiom of Choice2, for each X ∈ N(w) we can choose an element yX ∈ g(X).
Now, consider the set {yX | X ∈ N(w)}. There are two key observations about this set:

1. For each X ∈ N(w), W − {yX} ∈ N(w): since yX < X′ for some X′ ∈ N(w) and N(w)
is closed under supersets, we have X′ ⊆ W − {yX} ∈ N(w). Thus, ifM is a model
with a valuation V, where V( j) = yX for some j ∈ Nom, thenM,w |= �¬ j; and so,
M,w 6|= ^ j.

2. W − {yX | X ∈ N(w)} < N(w): Since for each X ∈ N(w), yX ∈ X, there is no X′ ∈ N(w)
such that X′ = W − {yX | X ∈ N(w)}. Thus, ifM is a model based on the frame F in
which [[ϕ]]M = W − {yX | X ∈ N(w)}, thenM,w 6|= �ϕ.

Let M = 〈W,N,V〉 be a model based on the frame F with V(i) = w and V(p) =
W − {yX | X ∈ N(w)}. Then, M is a falsifying model for 〈A〉(i ∧ �p). By item 2, above,
M,w 6|= �p; and so,M,w 6|= i ∧ �p (since V(i) = w, we have [[〈A〉(i ∧ �ϕ)]]M = ∅).

2The Axiom of Choice says that for any collection of non-empty sets indexed by any set I, (Xi)i∈I, there is
a sequence (xi)i∈I of elements such that for all i ∈ I, xi ∈ Xi.
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LetM′ = 〈W,N,V′〉 be any model in which V′ is a valuation on F such that V′(i) =
V(i) = w and V′(p) = V(p) = W − {yX | X ∈ N(w)}. Then,M′ is a model that 〈A〉(i ∧ �ϕ)-
extendsM. The claim is thatM′ is not a falsifying model for 〈A〉(i ∧ ^ j) → 〈A〉( j ∧ p),
where j , i. There are two cases:

1. V′( j) = yX for some X ∈ N(w). Then, as noted in item 1, above,M,w 6|= ^ j. Thus,
[[〈A〉(i ∧^ j)]]M′ = ∅. Hence, [[〈A〉(i ∧^ j)→ 〈A〉( j ∧ p)]]M′ = W.

2. V′( j) , yX for any X ∈ N(w). Then, since V′( j) ∈ [[p]]M′ = W − {yX | X ∈ N(w)}, we
haveM,w |= 〈A〉( j ∧ p). Hence, [[〈A〉(i ∧^ j)→ 〈A〉( j ∧ p)]]M′ = W.

In either case,M′ is not a falsifying model for 〈A〉(i ∧^ j)→ 〈A〉( j ∧ p). qed

3.2 First-Order Neighborhood Structures

3.2.1 Syntax and Semantics

The first-order modal language includes features from propositional modal logic and
first-order logic. For simplicity, the language in this section will not include constants,
terms or equality. Suppose thatV is a countable set of variables. For each natural number
n ≥ 0, there is a (countable) set of predicate symbols of arity n. Predicate symbols will be
denoted by capital letters F(n),G(n), . . .. To simplify the notation, I will write F instead of
F(n) when the arity of F is understood. The set of first-order modal formulas, denotedL1,
is the smallest set of formulas generated by the grammar:

F(x1, . . . , xn) | ¬ϕ | (ϕ ∧ ψ) | �ϕ | ∀xϕ

where F is an n-ary predicate symbol, x ∈ V, and for i = 1, . . . ,n, xi ∈ V. The other
Boolean connectives, the diamond modal operator (^) and the existential quantifier (∃)
are defined in the standard way. For instance, ∃xϕ is defined as ¬∀x¬ϕ. The usual rules
about free variables apply. For a formula ϕ ∈ L1, let Fr(ϕ) denote the set of free variables
in ϕ. I write ϕ(x) when x (possibly) occurs free in ϕ. The formula ϕ[y/x] is ϕ, in which
the free variable x is replaced with a variable y. The variable y is substitutable for x in ϕ
provided that y is free in ϕ[y/x]. 3

Adding first-order structures to neighborhood frames and models is straightforward.

Definition 3.8 (Constant Domain Neighborhood Frame) A constant-domain
neighborhood frame is a tuple 〈W,N,D〉, where W is a non-empty set of possible worlds;
N : W → ℘(℘(W)) is a neighborhood function; and D is a set (called the domain). /

3The usual restrictions apply when substituting y for x in ϕ so that either bound variables are renamed or
y is assumed to be substitutable for x in ϕ. See Enderton (2001) for a discussion.
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Definition 3.9 (Constant Domain Neighborhood Model) LetF = 〈W,N,D〉be a constant-
domain neighborhood frame. A constant-domain neighborhood model based on F is
a tuple 〈W,N,D, I〉, where I is a first-order interpretation function: for all n-ary predicate
symbols F, I(F,w) ⊆ Dn. /

Remark 3.10 (Variable Domain Models) It is also common to consider variable domain
models in which different domains are assigned to different possible worlds. There is no
inherent difficulty in defining variable domain neighborhood frames/models. It would
be interesting to extend the results discussed in this section to this more general setting
(cf. Awodey and Kishida, 2008; Kishida, 2011; Calardo, 2013).

Since formulas of L1 may include free variables, truth is defined at a state and an
assignment. An assignment is a function assigning elements of the domain to variables:
σ :V → D. The following definition is needed to define truth of quantified formulas.

Definition 3.11 (x-variant) An x-variant of an assignment σ is an assignment σ′ such that
for all y ∈ V, if y , x, then σ(y) = σ′(y). Write σ ∼x σ′ when σ′ is an x-variant of σ. /

Definition 3.12 (Truth) Suppose that M = 〈W,N,D, I〉 is a constant-domain neighbor-
hood model and σ is an assignment. For ϕ ∈ L1, truth at state w ∈ W with respect to σ,
denotedM,w |=σ ϕ, is defined by induction on the structure of ϕ:

1. M,w |=σ F(x1, . . . , xn) iff 〈σ(x1), . . . , σ(xn)〉 ∈ I(F,w), where F is an n-place predicate
symbol.

2. M,w |=σ ¬ϕ iffM,w 6|=σ ϕ

3. M,w |=σ ϕ ∧ ψ iffM,w |=σ ϕ andM,w |=σ ψ

4. M,w |=σ �ϕ iff [[ϕ]]M,σ ∈ N(w)

5. M,w |=σ ∀xϕ(x) iff for each σ′, if σ ∼x σ′, thenM,w |=σ′ ϕ(x),

where [[ϕ]]M,σ = {w | M,w |=σ ϕ} ⊆W. /

Example 3.13 (Detailed Example of a First-Order Neighborhood Model) Suppose that
F is a unary predicate symbol,V = {x, y}, and 〈W,N,D, I〉 is a first-order constant-domain
neighborhood model, where

• W = {w, v,u};

• N(w) = {{w, v}, {v,u}}, N(v) = {{v}}, N(u) = {{w, v}, {v}};

• D = {a, b}; and

• I(F,w) = {a}, I(F, v) = {a, b}, and I(F,u) = ∅.
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There are four possible assignments:

• σ1 :V → D, where σ1(x) = a, σ1(y) = b;

• σ2 :V → D, where σ2(x) = b, σ2(y) = a;

• σ3 :V → D, where σ3(x) = σ3(y) = a; and

• σ4 :V → D, where σ4(x) = σ4(y) = b

As the reader is invited to verify, we have the following truth sets associated with the
atomic formula F(x):

• [[F(x)]]M,σ1 = {w, v};

• [[F(x)]]M,σ2 = {v};

• [[F(x)]]M,σ3 = {w, v}; and

• [[F(x)]]M,σ4 = {v}.

In general, every formula ϕ ∈ L1 is associated with a function

[[ϕ]] : DV → ℘(W)

assigning sets of states to each assignment (note that DV is the set of all functions from
V to D). Notice that F(x) and F(y) are different formulas (since they have different free
variables), thus, are associated with different functions (although the ranges of these
functions are the same). Finally, the reader is invited to verify the following:

• [[�F(x)]]M,σ1 = [[�F(x)]]M,σ3 = {w,u} and [[�F(x)]]M,σ2 = [[�F(x)]]M,σ4 = {v}

• [[�∀xF(x)]]M,σ1 = [[�∀xF(x)]]M,σ2 = [[�∀xF(x)]]M,σ3 = [[�∀xF(x)]]M,σ4 = {v,u}

• [[∀x�F(x)]]M,σ1 = [[∀x�F(x)]]M,σ2 = [[∀x�F(x)]]M,σ3 = [[∀x�F(x)]]M,σ4 = {u}

Exercise 66 For each of the following formulas, find a first-order constant-domain neighborhood
model that makes the formula true and one that makes the formula false.

1. ∀x�P(x)→ �∀xP(x)

2. �∀xP(x)→ ∀x�P(x)

3. ∃x�P(x)→ �∃xP(x)

4. �∃xP(x)→ ∃x�P(x)
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3.2.2 The Barcan and Converse Barcan Schema

Discussion of first-order modal logic is most interesting when it is focused on the interac-
tion between modal operators and quantifiers. Two of the most widely discussed axiom
schemes allowing interaction between the modal operators and the quantifiers are the
Barcan and converse Barcan formulas.

Definition 3.14 (Barcan/Converse Barcan Schemas) The Barcan schema is:

(BF) ∀x�ϕ(x)→ �∀xϕ(x).

Any instance of (BF) is called a Barcan formula. The converse Barcan schema is:

(CBF) �∀xϕ(x)→ ∀x�ϕ(x).

Any instance of (CBF) called a converse Barcan formula . /

I start by surveying how the (BF) and (CBF) formulas behave on relational first order
structures. Recall that a relational frame is a tuple 〈W,R〉where W is a non-empty set and
R ⊆W ×W is a relation (cf. Appendix A). A constant-domain first-order relational model
based on a relational frame F = 〈W,R〉 is a tuple 〈W,R,D, I〉 where D is a set and I is a
first-order classical interpretation assigning n-ary relations to n-ary predicate symbols.

Given a first-order constant-domain relational model with a state w and assignment
σ, truth of formulas from L1 is defined as above (Definition 3.12) except for the modal
clause:

M,w |=σ �ϕ iff for each w′ ∈W, if wRw′ thenM,w′ |=σ ϕ.

The following observation is well-known:

Observation 3.15 The Barcan and converse Barcan formulas are valid on all first-order relational
models with constant domains.

Exercise 67 Prove Observation 3.15. This is a well-known observation (see Hughes and Cresswell
(1996), page 245, and Fitting and Mendelsohn (1999), Section 4.9).

Returning to first-order neighborhood frames, Arló-Costa (2002) showed that the
Barcan and the Converse Barcan formulas correspond to interesting properties of the
neighborhood function. Before reporting these results, we need some definitions. Recall
that a neighborhood frame is non-trivial provided that for all states w, N(w) , ∅. A
first-order neighborhood frame F = 〈W,N,D〉 has a non-trivial domain when D , ∅.

Exercise 68 Prove the following:

• If D = ∅, then the converse Barcan formula is valid. However, the Barcan formula is not
valid (unless W ∈ N(w) for all w).
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• If |D| = 1, then ∀x�ϕ(x)↔ �∀xϕ(x) is valid.

• If N(w) = ∅ for all states w, then ∀x�ϕ(x)↔ �∀ϕ(x) is valid.

To keep the notation at a minimum, say that a first-order neighborhood frame is trivial
provided that either N(w) = ∅ for all states w or |D| ≤ 1.

Proposition 3.16 (Arló-Costa, 2002) Suppose thatF is a constant-domain neighborhood frame.
The converse Barcan formula is valid on F iff either F is trivial or F is supplemented.

Proof. Suppose that F is a constant-domain first-order neighborhood model. If F
is trivial, then, as noted in the above exercise, the converse Barcan formula is valid.
Suppose that F = 〈W,N,D〉 is a non-trivial, monotonic first-order neighborhood frame
and thatM = 〈W,N,D, I〉 is an arbitrary model based on F . Let w ∈ W and σ : V → D.
We will show thatM,w |= �∀xϕ(x) → ∀x�ϕ(x). Suppose thatM,w |=σ �∀xϕ(x). Then,
[[∀xϕ(x)]]M,σ ∈ N(w). Now, for each σ′, if σ ∼x σ′, then [[∀xϕ(x)]]M,σ ⊆ [[ϕ(x)]]M,σ′ .
Therefore, since N(w) is closed under supersets, for each σ′ such that σ ∼x σ′, we have
[[ϕ(x)]]M,σ′ ∈ N(w). But this implies thatM,w |=′σ �ϕ(x) for all σ′ such that σ ∼x σ′. Hence,
M,w |=σ ∀x�ϕ(x). This proves the right-to-left implication.

For the left-to-right implication, we must show that if F is a non-trivial frame that is
not monotonic, then the converse Barcan formula is not valid. Suppose thatF = 〈W,N,D〉
is not closed under supersets. Then, there is some state w and sets X and Y such that
X ∈ N(w), X ⊆ Y, but Y < N(w). Let F be a unary predicate symbol. We will construct a
modelM based on F , whereM,w |=σ �∀xF(x), butM,w 6|=σ ∀x�F(x).

The interpretation of F is defined as follows. Choose an element a ∈ D (this is possible
since F is non-trivial). Then, for all v ∈W,

I(F, v) =


D iff v ∈ X
{a} iff v ∈ Y − X
∅ iff v ∈W − X

Let σ be any assignment. Since there is at least one element b ∈ D such that b , a,
we have [[∀xF(x)]]M,σ = X. Hence, M,w |=σ �∀xF(x). However, let σ′ : V → D be an
assignment that is the same asσ, exceptσ′(x) = a. Then, σ ∼x σ′ and [[F(x)]]M,σ′ = Y < N(w).
Hence,M,w 6|=σ′ �F(x); and so,M,w 6|=σ ∀x�F(x). qed

The Barcan formula also corresponds to interesting properties of the neighborhood
function. We first need some notation. Let κ be a cardinal. Recall the definitions from
Section 1.1. A neighborhood frame is closed under less than or equal to κ intersections
if, for each state w and each collection of sets {Xi | i ∈ I} where |I| ≤ κ, ∩i∈IXi ∈ N(w).
Also, a neighborhood frame is consistent provided that for all states w, ∅ < N(w). One
more definition is needed before we can characterize the frames that validate the Barcan
formula.
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Definition 3.17 (Richness) A consistent first-order neighborhood frame 〈W,N,D〉 is rich
provided for all w ∈W, there are at least as many elements in D as there are in N(w). That
is, there is a 1-1 function from N(w) to D. /

Proposition 3.18 (Arló-Costa, 2002; Arló-Costa and Pacuit, 2006) Suppose that F is a con-
sistent constant-domain neighborhood frame. Then, the Barcan formula is valid on F iff either 1)
F is trivial; or 2) if D is a non-empty finite set, then F is closed under finite intersections, and if
D is infinite of size κ (where κ is a cardinal), then F is rich and closed under ≤ κ intersections.

Proof. Suppose that F is a consistent constant-domain first-order neighborhood model.
If F is trivial, then, as noted in the above exercise, the Barcan formula is valid on F .
Suppose thatM = 〈W,N,D, I〉 is a model based on F . Let w ∈W and σ be an assignment
σ. We must show thatM,w |=σ ∀x�ϕ(x)→ �∀xϕ(x). Suppose thatM,w |=σ ∀x�ϕ(x). If D
is finite, then {[[ϕ(x)]]M,σ′ | σ

′
∼x σ} is finite. Now, since [[ϕ(x)]]M,σ′ ∈ N(w) for each σ′ such

that σ ∼x σ′ and N is closed under finite intersections, we have that
⋂
{[[ϕ(x)]]M,σ′ | σ

′
∼x

σ} ∈ N(w). Therefore, M,w |=σ �∀xϕ(x). The proof is similar when D is infinite. This
shows that the conditions in the proposition imply that the Barcan formula is valid.

For the converse, suppose that F = 〈W,N,D〉 is a consistent, non-trivial, constant-
domain first-order neighborhood frame such that |D| ≥ 2. Suppose, now, that D is finite,
but thatF is not closed under finite intersections. Then, there is a state w and two sets X,Y
such that X,Y ∈ N(w), but X ∩ Y < N(w) (recall Lemma 1.7). Since D contains at least two
distinct elements, fix d, c ∈ D such that d , c. We must construct a modelM = 〈W,N,D, I〉
based on F that invalidates the Barcan formula. Let F be a unary predicate symbol that
is interpreted as follows:

I(F, v) =


{c} iff v ∈ X
D − {c} iff v ∈ Y
∅ iff v < X ∪ Y

Then, we have:

[[F(x)]]M,σ =

X iff σ(x) = c
Y iff σ(x) , c

Since X,Y ∈ N(w), for any assignment σ, [[F(x)]]M,σ ∈ N(w). Let σ be an assignment. Then,
we haveM,w |=σ ∀x�F(x). However, [[∀xF(x)]]M,σ = X ∩ Y; and so,M,w 6|=σ �∀xF(x).

Suppose, now, that D is infinite and of cardinality κ. Further, suppose that F is not
closed under ≤ κ intersections. Then, there is a state w and a collection {Xi | i ∈ I} where
|I| ≤ κ such that

⋂
i∈I Xi < N(w). Since |I| ≤ |D|, there is a 1-1 function f : I → D. Thus, for

each each Xi, there is a unique c = f (i) ∈ D. Denote the element associated with Xi by cXi .
The argument is similar to that in the finite case. Let F be a unary predicate. Define the
interpretation of F in such a way that:
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[[F(x)]]M,σ =

X1 iff σ(x) < {cX j | j , 1, j ∈ I}
Xi iff i , 1, i ∈ I and σ(x) = cXi

Such an interpretation is possible since each Xi is associated with a unique element
cXi of the domain. Then, for all assignments σ, [[F(x)]]M,σ ∈ N(w). Let σ be an assignment.
Then, M,w |=σ ∀x�F(x). However, [[∀xF(x)]]M,σ =

⋂
i∈I Xi < N(w); and so, M,w 6|=σ

�∀xF(x). Hence, the Barcan formula is not valid. qed

3.2.3 Completeness

The study of first-order modal logics has a long and rich history. It is beyond the scope
of this book to survey this extensive literature here. The interested reader is invited to
consult Fitting and Mendelsohn (1999); Goldblatt (2011); Hughes and Cresswell (1996);
Gabbay et al. (2008); and Garson (2002). There has been much less discussion of non-
normal first-order modal logics (cf. Arló-Costa, 2002; Arló-Costa and Pacuit, 2006; Stolpe,
2003; Waagbø, 1992; Calardo, 2013). In this section, I discuss axiomatizations of first-order
neighborhood frames with constant domains. Suppose that L is a propositional modal
logic. Let FOL + L denote the set of formulas closed under the following rules and axiom
schemes (see Hughes and Cresswell, 1996, for a discussion):

L All axiom schemes and rules from L.

(All) ∀xϕ(x)→ ϕ[y/x] is an axiom scheme, where y is free for x in ϕ.

(Gen)
ϕ→ ψ
ϕ→ ∀xψ , where x is not free in ϕ.

For example, FOL + E contains all instances of the axiom schemes (PC), (Dual), and
(All) and is closed under the rules (RE), (Gen), and (MP). Given any non-normal or
normal propositional modal logic L, write `FOL+S ϕ if ϕ ∈ FOL + S (equivalently ϕ
there is a deduction of ϕ using the above axiom schemas and rules). For simplicity, let
FOL + L + (BF) denote the set of formulas generated by all axiom schemes and rules of
FOL + S plus the Barcan formula (BF). The case is similar for FOL + L + (CBF). The first
observation is that the converse Barcan formula is derivable in monotonic modal logics.

Exercise 69 Prove that `FOL+EM �∀xϕ(x)→ ∀x�ϕ(x).

The completeness proof for non-normal modal logics with respect to neighborhood
semantics combines the canonical model construction from Section 2.3.1 with standard
techniques for proving completeness for first-order logic (cf. Enderton, 2001).

I start by recalling the definitions from Section 2.3.1. In particular, let Γ `FOL+L ϕmean
that there is a deduction from Γ of ϕ in the logic FOL + L. The definitions of inconsistent,
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consistent and maximally consistent sets (Definition 2.53) are easily adapted to the first-
order modal logic setting. The addition of quantifiers to the modal language does add a
complication. The difficulty is that the following set is consistent in any first-order modal
logic:

{P(x1),P(x2), . . . ,P(xn), . . . ,¬∀xP(x)}.

where the xi range over all the variables in the language. In order to build a model that
satisfies this set, we need to ensure that ¬∀xP(x) is true. This requires an element of the
domain that is not in the interpretation of P. Such an element is called a witness for
the formula ¬∀xP(x). This suggest that the maximally consistent sets used to build a
canonical model must satisfy an additional property.

Definition 3.19 (∀-property) Suppose that Γ is a set of formulas of first-order modal logic.
Say that Γ has the ∀−property when for each formula ϕ ∈ Γ and each variable x, there is
some variable y, called the witness for ∀xϕ(x), such that ϕ[y/x]→ ∀xϕ(x) ∈ Γ. /

As the above example illustrates, we may need to extend the language L1 in order to
find (maximally consistent) sets that have the ∀-property. Suppose thatV+ is a countable
set of new variables (i.e.,V+

∩V = ∅). Suppose thatL+
1 is the first-order modal language

generated using the predicate symbols, connectives, quantifiers and modal operators from
L1 and variables from V ∪V+. So, L+

1 extends L1 with infinitely many new variables.
In this extended language, we can adapt Lindenbaum’s Lemma (Lemma 2.55) to show
that every consistent set of formulas can be extended to be maximally consistent with the
∀-property.

Lemma 3.20 (Lindenbaum’s Lemma for First-Order Modal Logic) Suppose that L is a first-
order modal logic. If ∆ is an L-consistent set ofL1-formulas, then there is a maximally L-consistent
set of L+

1 -formulas Γ with the ∀-property such that ∆ ⊆ Γ, where L+
1 is the language that extends

L1 with countably many new variables.

The proof is similar to the proof of the Lindenbaum Lemma for propositional modal
logic and is left to the reader.4 Note that if Γ is an L-consistent set of formulas from L+

1 ,
then Γ is also L-consistent with respect to the restricted language L1. We are now in a
position to define a canonical model for first-order modal logic.

Definition 3.21 (Canonical First-Order Neighborhood Model) Suppose that L is a first-
order modal logic. A first-order constant-domain neighborhood modelML = 〈WL,N,DL, IL〉,
where

• WL = {Γ | Γ is a maximally L-consistent subset of L+
1 with the ∀-property};

4This is part of the standard toolkit for proving completeness of first-order logic. Consult Enderton (2001)
for details. See, also, Hughes and Cresswell (1996), pg. 258, for a discussion in the context of first-order
modal logic.
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• DL = V+, where V+ is the extended set of variables used in the proof of Lemma
3.20; and

• for each Γ ∈WL, 〈x1, . . . , xn〉 ∈ IL(F,Γ) iff F(x1, . . . , xn) ∈ Γ, where F is an n-ary relation
symbol in the language L+

1 .

is canonical for L provided that

|ϕ|L ∈ N(Γ) iff �ϕ ∈ Γ,

where |ϕ|L = {Γ | Γ is a maximally L-consistent set with the ∀-property, and ϕ ∈ Γ} is the
proof set of ϕ. /

The canonical assignment is the identity map: σL : V+
→ DL, where for all x ∈ V+,

σL(x) = x. For example, the smallest canonical model for L isML = 〈WL,Nmin
L ,DL, IL〉,

where for all Γ ∈ WL, Nmin
L (Γ) = {|ϕ|L | �ϕ ∈ Γ}. Before proving the Truth Lemma, I

recall the following standard results about first-order logic (that are easily adapted to the
first-order modal setting):

• (principle of shared variables) If σ and σ′ agree on all free variables in ϕ, then
M,w |=σ ϕ iffM,w |=σ′ ϕ.

• (principle of replacement) Suppose that σ and σ′ are assignments such that for all
u , y, σ′(u) = σ(u) and σ′(y) = σ(x). Then,M,w |=σ ϕ(x) iffM,w |=σ′ ϕ[y/x].

• (principle of alphabetic variants) If ϕ and ϕ′ are alphabetic variants (the formulas
differ only in the names of bound variables), then ϕ ↔ ϕ′ is derivable from the
axiom schemes (All), PC and the rules MP and Gen.

Lemma 3.22 (Truth Lemma) Suppose that L is a first-order modal logic andM = 〈WL,N,DL, IL〉

is a canonical model for L. For each Γ ∈WL and formula ϕ ∈ L1,

ϕ ∈ Γ iffML,Γ |=σL ϕ.

Proof. The proof is by induction on the structure of ϕ.
The argument for the base case runs as follows:

F(x1, . . . , xn) ∈ Γ iff 〈x1, . . . , xn〉 ∈ IL(F,Γ) (definition of IL)

iff 〈σL(x1), . . . , σL(xn)〉 ∈ IL(F,Γ) (definition of σL)

iff ML,Γ |=σL F(x1, . . . , xn) (definition of truth)

The argument for the Boolean connectives is as usual.
Suppose that ∀xϕ(x) ∈ Γ. Let σ′ be any assignment such that σL ∼x σ′. Then, σ′(x) = y,

where y ∈ DL = V+. Without loss of generality, we can assume that y is free for x in
ϕ. Otherwise, proceed with the formula ∀xϕ′(x), where ϕ′ is ϕ in which all bounded
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variables y are renamed. Since ϕ′ and ϕ are alphabetic variants, we haveM,Γ |=σL ∀xϕ(x)
iff M,Γ |=σL ∀xϕ′(x). Since ∀xϕ(x) ∈ Γ and y is free for x in ϕ, using the (All) axiom
scheme, we have ϕ[y/x] ∈ Γ. By the induction hypothesis,ML,Γ |=σL ϕ[y/x]; and so, by
the principle of replacement,ML,Γ |=σ′ ϕ. Since σ′ is an arbitrary x-variant of σL, we have
ML,Γ |= ∀xϕ(x), as desired.

Suppose that ∀xϕ(x) < Γ. Then, since Γ is maximal, ¬∀xϕ(x) ∈ Γ; and so, by the
∀-property, there is some variable y ∈ V+ such that ¬ϕ[y/x] ∈ Γ. That is, ϕ[y/x] < Γ.
Thus, by the induction hypothesis,ML,Γ 6|=σL ϕ[y/x]. Thus, if σ′ is the x-variant of σL with
σ′(x) = y, then, by the principle of replacement,ML,Γ 6|=σ′ ϕ(x). Hence,ML,Γ 6|=σL ∀xϕ(x),
as desired.

The argument for the modal operator proceeds as in the case for propositional modal
logic (Lemma 2.60):

�ϕ ∈ Γ iff |ϕ|L ∈ N(Γ) (sinceM is canonical for L)

iff [[ϕ]]M,σL ∈ N(Γ) (induction hypothesis)

iff ML,Γ |=σL �ϕ (definition of truth)

This completes the proof. qed

Given the above Truth Lemma, completeness for the minimal non-normal first-order
modal logic follows from the standard argument (cf. Theorem 2.61).

Theorem 3.23 (Arló-Costa and Pacuit, 2006) The class of all first-order constant-domain neigh-
borhood frames is sound and strongly complete for FOL + E.

Completeness for first-order modal logics FOL + L, where L is a non-normal modal
logic extending E (e.g., EM,EC, EMN, etc.), proceeds as in Section 2.3.1. For instance,
since we can show that the supplementation of the smallest canonical model for FOL+EM
is a canonical for FOL + EM, we have:

Theorem 3.24 (Arló-Costa and Pacuit, 2006) FOL + EM is sound and complete with respect
to the class of supplemented first-order constant-domain neighborhood frames.

The situation is more complicated when the (converse) Barcan formulas are added to
the logic. The first observation is that the axiom scheme M is not derivable in FOL + E +
(CBF) (the logic that extends FOL + E with all instances of (CBF)).

Observation 3.25 0FOL+E+(CBF) �(ϕ ∧ ψ)→ (�ϕ ∧ �ψ).

Proof. Consider any frame F = 〈W,N,D〉 where |D| = 1, but N is not closed under
supersets. Then, �(ϕ ∧ ψ) → (�ϕ ∧ �ψ) is not valid on F (there is a model based on F ,
a state w ∈ W and an assignment σ : V → D such thatM,w 6|= �(ϕ ∧ ψ) → (�ϕ ∧ �ψ)).
Note that F is a frame for FOL + E + (CBF) (in particular, all instances of (CBF) are valid
on F ). Thus, 0FOL+E+(CBF) �(ϕ ∧ ψ)→ (�ϕ ∧ �ψ). qed
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This means that FOL + E + (CBF) is not strongly complete for the class of first-order
constant-domain neighborhood frames that are monotonic. How, then, do we characterize
the logic FOL+E+(CBF)? The solution is to consider the class of first-order neighborhood
frames that are either non-trivial (i.e., |D| > 1 and for all w ∈W, N(w) , ∅) and monotonic
or have singleton domains and neighborhood functions that are not monotonic. Then,
(CBF) is valid on this class of frames, but the addition of the trivial frames (with |D| = 1)
with neighborhood functions that are not closed under supersets guarantees that M is
not valid. A full discussion of completeness for all non-normal first-order modal logics is
beyond the scope of this book. I conclude this presentation of first-order modal logic by
discussing the situation with FOL + K and FOL + K + BF. The first observation is that the
Barcan formula is not derivable in FOL + K.

Observation 3.26 0FOL+K ∀x�ϕ(x)→ �∀xϕ(x).

Proof. Suppose that W = N ∪ {∞}. For each n ∈ N, let [n,∞] = {m | m ∈ N,m ≥ n} ∪ {∞}.
For each i ∈ W, let N(i) = {[n,∞] | n ∈ N}. Then, as the reader is invited to check, each
N(i) is a filter. Let D = {c0, c1, . . .} be a countable set and define an interpretation I such
that, for the predicate symbol P, [[P(x)]]M,σ = [n,∞] when σ(x) = cn. Since N is a filter, the
model M = 〈W,N,D, I〉 is a model for FOL + K. Suppose that i ∈ W. By construction,
we have [[P(x)]]M,σ ∈ N(i), for any assignment σ. Thus,M, i |= ∀x�P(x). However, since
[[∀xP(x)]]M,σ = {∞} < N(i),M, i 6|= �∀xP(x). Thus,M, i 6|= ∀x�P(x)→ �∀xP(x). qed

Recall from Section 2.3.1 that there are two different classes of frames that can be
used to characterize the propositional modal logic K. The first result that K is sound and
strongly complete with respect to the class of filters (Theorem 2.67) can be adapted to give
a completeness result for FOL + K.

Theorem 3.27 FOL + K is sound and strongly complete with respect to the class of constant-
domain neighborhood frames that are filters.

It is well-known that FOL + K + BF is sound and complete with respect to the class of
augmented first-order neighborhood frames. The proof of this result is beyond the scope
of this book (see Hughes and Cresswell (1996) and Gabbay et al. (2008) for details).

First-Order Topological Models

I conclude my discussion of first-order modal logic by briefly discussing first-order ex-
tensions of the topological models from Section 1.4.1. A first-order constant domain
topological frame is a tuple 〈W,T ,D〉where 〈W,T〉 is a topology (Definition 1.27) and D
is a set (to simplify the notation I will call this a predicate topological frame). A first-order
constant domain topological model (shortened to first-order predicate model) is a tuple
〈W,T ,D, I〉 where 〈W,T ,D〉 is a predicate topological frame and I is an interpretation of
the predicate symbols (for all n-ary predicate symbols F, I(F,w) ⊆ Dn).
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Recall that the propositional modal logic S4 extends K with the axiom schemes�ϕ→ ϕ
and �ϕ→ ��ϕ. It is well-known that S4 is sound and complete with respect to the class
of all topological frames (McKinsey and Tarksi, 1944; Rasiowa and Sikorski, 1963; Kremer,
2013). In the first study of topological models for first-order modal logic, Rasiowa and
Sikorski (1963) extended this result to predicate topological frames.

Theorem 3.28 (Rasiowa and Sikorski, 1963) The logic FOL + S4 is sound and complete for
the class of all predicate topological frames.

An important line of research is focused on the modal logic of specific topological
spaces. Building on the seminal result of McKinsey and Tarski, Rasiowa and Sikorski
(1963) proved that S4 is sound and complete for any topological space that is dense-in-
itself. Many interesting topological spaces are covered by the Rasiowa and Sikorski result,
including the real line (i.e., the usual topology onR), the rational line and the Cantor space.
Consult (Kremer, 2013; Bezhanishvili and Gehrke, 2005; Lando, 2012; Mints and Zhang,
2005) for further refinements and alternative proofs of these fundamental theorems. This
raises an interesting question about whether FOL + S4 is complete for the corresponding
predicate topological spaces. I start with a negative result from Kremer (2014). Say that a
first-order modal logic FOL+L is complete for a topology 〈W,T〉 provided that FOL+L is
complete for the class of predicate topological frames 〈W,T ,D〉, where D is any domain.

Theorem 3.29 (Kremer, 2014) The logic FOL+S4 is not complete for the real line (i.e., 〈R,TR〉
where TR is the usual topology).

Proof. Let ϕ be the formula:

∀x�F(x) ∧ �∀x(�F(x) ∨ �¬F(x))→ �∀xF(x),

where F is a unary predicate. We will show that

1. ϕ is valid on any predicate topological frame 〈R,TR,D〉, where 〈R,TR〉 is the usual
topology on R; and

2. 0FOL+S4 ϕ.

To prove item 1, let M = 〈R,TR,D,V〉 be a first-order topological model based on
〈R,TR,D〉. I start with an observation about the topology 〈R,TR〉. Suppose that I ⊆ R
is an interval. That is, I = (r1, r2) = {r ∈ R | r1 < r < r2}. Then, there are no open sets
O1,O2 ∈ TR such that O1 ∩ O2 = ∅ and I = O1 ∪ O2. That is, no interval is the disjoint
union of open sets. Topological spaces with this property are said to be locally connected.

Let r ∈ R and σ :V → D be an assignment. Suppose thatM, r 6|=σ ϕ. Then,

(1) M, r |=σ ∀x�F(x);

(2) M, r |=σ �∀x(�F(x) ∨ �¬F(x)); and
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(3) M, r 6|=σ �∀xF(x).

By (2), there is an O ∈ TR such that r ∈ O and for all σ′, if σ ∼x σ′, then

(4) for all σ′ if σ ∼x σ
′, then O ⊆ [[�F(x) ∨ �¬F(x)]]M,σ′

. By (3), there is an assignment σ′′ such that σ ∼x σ′′ and

(5) O ∩ [[¬F(x)]]M,σ′′ , ∅

Since σ ∼x σ′′, by (4), we have that

(6) O ⊆ [[�F(x) ∨ �¬F(x)]]M,σ′′ = [[�F(x)]]M,σ′′ ∪ [[�¬F(x)]]M,σ′′

Since r ∈ O ∈ TR, there is an interval I such that r ∈ I ⊆ O. Define the following sets:

O1 = I ∩ [[�F(x)]]M,σ′′ O2 = I ∩ [[�¬F(x)]]M,σ′′

Then, O1 and O2 are both open sets (they both are finite intersections of open sets).
Furthermore, by (6) and that I ⊆ O, we have that I = O1 ∪ O2. By (1), r ∈ [[�F(x)]]M,σ′′ .
Hence, r1 ∈ I ∩ [[�F(x)]]M,σ′′ ; and so, O1 , ∅. By (5) and that I ⊆ O, there is a t ∈ R such
that t ∈ I ∩ [[¬F(x)]]M,σ′′ . Since [[�F(x)]]M,σ′′ ⊆ [[F(x)]]M,σ′′ , we have t < [[�F(x)]]M,σ′′ . By
(6), t ∈ [[�¬F(x)]]M,σ′′ . Thus, t ∈ I ∩ [[�¬F(x)]]M,σ′′ ; and so O2 , ∅. Hence, the interval I is
the disjoint union of open sets. This is contradicts the above observation that 〈R,TR〉 is
locally connected. Thus, ϕ is valid on any predicate topological frame 〈R,TR,D〉.

To prove item 2, we show that ϕ is not valid on a class of frames for which FOL + S4
is known to be complete. A variable domain first-order relational frame is a tuple
〈W,R,D, I〉, where W , ∅; R ⊆ W ×W; D is a family of sets indexed by states W (write
Dw for the domain associated with w); and I is a variable domain interpretation function:
for each state w and n-ary predicate F, I(w,F) ⊆ Dn

w. Formulas from the first-order
modal language L1 are interpreted at states w and assignments σ : V →

⋃
w∈WDw. The

definition of truth for atomic formulas and the Boolean connectives is similar to Definition
3.12. Truth for the universal quantifier and the modal operator is defined as follows:

• M,w |=σ ∀xϕ(x) for all σ′, if σ ∼x σ′ and σ′(x) ∈ Dw, thenM,w |=σ′ ϕ(x)

• M,w |=σ �ϕ for all v, if w R v, thenM, v |=σ ϕ

It is known that FOL+S4 is sound and complete with respect to variable domain first-order
relational models with a reflexive and transitive relation (Hughes and Cresswell, 1996).
It is not hard to find a model based on such a frame that makes ϕ false. Let W = {w, v},
Dw = Dv = {a, b}, R = {(w,w), (w, v), (v, v)} and I(w,F) = I(v,F) = {a}. Let σ1(x) = a and
σ2(x) = b. Then,M,w |=σ ∀x�F(x) since the only element in the domain Dw is a and a ∈
I(v,F)∩ I(w,F). To see thatM,w |=σ �∀x(�F(x)∨�¬F(x)), note that a is the only element of
Dw, so clearlyM,w |=σ ∀x(�F(x)∨�¬F(x)). Furthermore, since v is the only state accessible
from v, M, v |=σ′ �F(x) ∨ �¬F(x) for any assignment σ′. Finally, M,w 6|=σ �∀xF(x) since
w R v andM, v 6|=σ′ F(x) when σ′(x) = b. Thus, ∀x�F(x)∧�∀x(�F(x)∨�¬F(x))→ �∀xF(x)
is not valid on these variable domain relational frames, which implies that 0FOL+S4 ϕ. qed
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Interestingly, Kremer (2014) showed that FOL+S4 is sound and complete with respect
to the rational line. The rational line is the subspace topology induced by TR. That is, it is the
topology 〈Q,TQ〉, where Q ⊆ R is the set of rational numbers and TQ = {U ∩Q | U ∈ TR}.
I report the theorem here, and refer the reader to (Kremer, 2014, Theorem 6.1) for the
intricate proof.

Theorem 3.30 (Kremer, 2014) FOL + S4 is sound and complete for 〈Q,TQ,D〉, where D is
countably infinite.

My discussion of first-order modal logic on neighborhood structures was simplified
in two ways. First, the first-order modal languageL1 does not include constants, function
symbols or equality. Second, I restricted attention to constant domain models. It is also
common to consider variable domain models in which different domains are assigned
to different states (cf. the proof of item 2 in Theorem 3.29). Consult Gabbay et al. (2008);
Awodey and Kishida (2008); Kishida (2011); Calardo (2013); and Kremer (2014) for further
results about first-order modal logic on neighborhood structures.

3.3 Common Belief on Neighborhood Structures

The game theory and epistemic logic literature contains many notions of group knowledge
and belief. These notions have played a fundamental role in the analysis of distributed
algorithms (Halpern and Moses, 1990), social interactions (Chwe, 2001) and political
institutions (List, 2014). It is beyond the scope of this section to discuss all of these concepts
(see Vanderschraaf and Sillari, 2014, for an in-depth discussion of this literature)5. In this
section, I introduce multi-agent neighborhood models and show how to define various
notions of group beliefs in this setting.

Suppose that A = {1, . . . ,n} is a finite set of agents. A multi-agent modal language
is defined in the obvious way. Suppose that At is a set of atomic propositions, and let Ln

contains all formulas generated from the following grammar:

p | ¬ϕ | (ϕ ∧ ψ) | �iϕ

where p ∈ At and i ∈ A. Additional Boolean connectives (∨,→,↔) are defined as usual,
and for each i ∈ A, let ^iϕ be ¬�i¬ϕ. In this section, the intended interpretation of �iϕ is
that “agent i believes that ϕ”.

A multi-agent neighborhood frame is a tuple 〈W, {Ni}i∈A〉, where for each i ∈ A,
Ni : W → ℘(℘(W)) is a neighborhood function. A multi-agent neighborhood model is
a tupleM = 〈W, {Ni}i∈A,V〉, where 〈W, {Ni}i∈A〉 is a multi-agent neighborhood frame and
V : At→ ℘(W) is a valuation function. Truth of formulas ϕ ∈ Ln at states in a multi-agent

5The textbooks (Fagin et al., 1995) and (van Benthem, 2011) also provide illuminating discussions of key
logical issues.
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neighborhood model M = 〈W, {Ni}i∈A,V〉 is defined as in Definition 1.15. Truth of the
indexed modal formulas runs as follows:

M,w |= �iϕ iff [[ϕ]]M ∈ Ni(w).

In the remainder of this section, I discuss various notions of group beliefs in multi-agent
neighborhood models.

Everyone Believes Suppose that G ⊆ A is a non-empty set of agents, and M =
〈W, {Ni}i∈A,V〉 is a multi-agent neighborhood model. Let NG : W → ℘(℘(W)) be a neigh-
borhood function where, for all w ∈W, NG(w) =

⋂
i∈G Ni(w). Thus, NG(w) contains all sets

that are neighborhoods for each agent i ∈ G. Extend the language Ln with operators �G
for each G ⊆ A. Truth of �Gϕ is defined as follows:

M,w |= �Gϕ iff [[ϕ]]M ∈ NG(w).

Thus, �Gϕ is true if every agent in G believes that ϕ. Since there are only finitely many
agents, we can define�Gϕ as

∧
i∈G �iϕ. Many of the properties of neighborhood functions

discussed in Section 1.1 “lift” to the everyone believes neighborhood function.

Exercise 70 1. If, for all i ∈ G, Ni is monotonic, then NG is monotonic.

2. If, for all i ∈ G, Ni is augmented, then NG is augmented.

3. Is there a property P of neighborhood functions such that for each i ∈ G, Ni has property P,
but NG does not have property P?

Exercise 71 Prove that RE plus the axiom

�Gϕ↔
∧
i∈G

�iϕ

is sound and complete for all multi-agent neighborhood frames in which NG is defined as above.

Distributed Belief The neighborhood function NG for a set of agents G assigns to
each state w the sets that all agents in G at w believe. A more interesting operation on
neighborhood functions is to aggregate the agents’ beliefs. Suppose that X andY are two
collections of subsets of W. We can form a new collection of sets by intersecting each of
the elements of X andY:

X uY = {Z | Z = X ∩ Y, for some X ∈ X and Y ∈ Y}.

Using the above operation, we can define a neighborhood function that represents an
aggregation of a group’s beliefs. Suppose thatM = 〈W, {Ni}i∈A,V〉 is a multi-agent neigh-
borhood model. For each ∅ , G ⊆ A, define the aggregate neighborhood function
NuG : W → ℘(℘(W)) as follows. For each w ∈W,

NuG(w) = ui∈GNi(w).
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To reason about this operation, add a modality [u]G to the languageLn. The interpretation
of [u]Gϕ is as follows:

M,w |= [u]Gϕ iff [[ϕ]]M ∈ NuG(w).

The formula [u]Gϕ corresponds to what is called distributed belief in the epistemic logic
literature (cf. Halpern and Moses, 1990; Roelofsen, 2007; van der Hoek et al., 1999). The
distributed beliefs of a group represent what the agents would believe if they shared ev-
erything that they believe. The following example illustrates this. Suppose thatA = {1, 2},
andM = 〈W, {N1,N2},V〉 is a multi-agent neighborhood model with W = {w1,w2,w3,w4},
V(p) = {w1,w3} and V(q) = {w1,w2}. The agents’ neighborhoods at state w1 are (the
neighborhoods at other states do not matter for this example):

• N1(w1) = {{w1,w3}, {w1,w2,w3}, {w1,w3,w4},W}, and

• N2(w1) = {{w1,w4}, {w1,w2,w4}, {w1,w3,w4},W}.

Since [[p]]M = {w1,w3} and [[p→ q]]M = {w1,w2,w4}, we have that M,w1 |= �1p and
M,w1 |= �2(p → q). However, neither agent believes that q: M,w1 6|= �1q andM,w1 6|=
�2q. There is distributed belief of q (M,w1 |= [u]{1,2}q). To see this, note that N1(w1)uN2(w1)
is the set

{{w1}, {w1,w2}, {w1,w3}, {w1,w4}, {w1,w2,w3}, {w1,w3,w4}, {w1,w2,w4},W}.

Note that NuG(w) may contain ∅ even when ∅ < Ni(w) for each i ∈ G. This would
happen if the agents’ beliefs were inconsistent (the same is true for the distributed belief
operator discussed in (Halpern and Moses, 1990; Roelofsen, 2007)). The above example
shows that there may be formulas that are distributed beliefs but are not believed by
any of the agents in the group. That is, for a group of agents G with i ∈ G, the formula
[u]Gϕ → �iϕ (for i ∈ G) is not necessarily valid. The converse is valid given a natural
assumption about the neighborhoods.

Exercise 72 1. Prove that in multi-agent neighborhood models in which each neighborhood
contains the unit (for all i ∈ A, for all w ∈W, W ∈ Ni(w)), the formula

∧
i∈G(�iϕ→ [u]Gϕ)

is valid.

2. Show that the formula from part 1. is not necessarily valid if the neighborhoods do not
contain the unit.

I conclude this short subsection with an exercise that demonstrates that the above operator
is, in fact, the appropriate generalization of distributed belief.

Exercise 73 Suppose that for all i ∈ G, Ni is augmented. Prove that NuG is augmented, and that
RNuG

=
⋂

i∈G RNi (cf. Lemma 2.24).
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Common Belief Distributed belief describes what the group believes after everyone
in the group shares everything that they believe. At the opposite end of the spectrum
is common belief. This is a group belief that is completely transparent to everyone in the
group (without any communication). That is,ϕ is commonly believed if everyone believes
that ϕ, everyone believes that everyone believes that ϕ, everyone believes that everyone
believes that everyone believes that ϕ, and so on ad infinitum. There are rich literatures in
logic (Halpern and Moses, 1990; Heifetz, 1999; van Benthem and Sarenac, 2004; Barwise,
1987), philosophy (Cubitt and Sugden, 2003; Lewis, 1969), and game theory (Geanakoplos,
1995; Monderer and Samet, 1989; Pacuit and Roy, 2015) focused on common belief. It
is beyond the scope of this book to discuss this literature here. Instead, I focus on the
definition of common belief in weak systems of modal logic (Lismont and Mongin, 1994b,
2003, 1994a; Heifetz, 1996).

In the remainder of this section, I restrict attention to multi-agent neighborhood frames
that are monotonic. That is, the neighborhood function Ni : W → ℘(℘(W)) for each agent
i ∈ A satisfies the monotonicity property: For all w ∈ W and sets X,Y ⊆ W, if X ⊆ Y
and X ∈ Ni(w), then Y ∈ Ni(w). Crucially, the neighborhood functions may not be closed
under intersection. It turns out that there are two definitions of common belief in this
setting. Both definitions use the following notion.

Definition 3.31 (Evident Beliefs) Suppose thatM = 〈W, {Ni}i∈A,V〉 is a multi-agent neigh-
borhood model. A set X ⊆ W is i-evident provided that X ⊆ {w | X ∈ Ni(w)}. A set X is
G-evident if it is i-evident for all i ∈ G. To simplify the notation, we say that X is evident
if it isA-evident. /

Recall from Section 1.2.1 that if N : W → ℘(℘(W)) is a neighborhood function, then
mN : ℘(W) → ℘(W) is the function, where for all X ⊆ W, mN(X) = {w | X ∈ N(w)}. To
simplify notation, for G ⊆ A, I write mG instead of mNG . Thus, mG(X) is the set of all states
in which every agent in G believes X; and X is G-evident if X ⊆ mG(X).

The first definition of common belief is a non-probabilistic version of the common
belief operator from Monderer and Samet (1989).

Definition 3.32 (Common Belief, version 1) Suppose thatM = 〈W, {Ni}i∈A,V〉 is a mono-
tonic multi-agent neighborhood model. For each G ⊆ A, define a function C1

G : ℘(W) →
℘(W) as follows:

C1
G(Y) = {w | there is a G-evident set X such that w ∈ X and X ⊆ mG(Y)}. /

Then, ϕ is commonly believed at a state w if there is some evident set containing w
that implies that everyone believes that ϕ. It will be useful to work with the following
characterization of the common belief operator:

(∗) C1
G(Y) =

⋃
{X | X ⊆ mG(X) ∩mG(Y)}.

To reason about this operator, I extend the language Ln with a modal operator �∗G
with the following truth clause:
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M,w |= �∗Gϕ iff w ∈ C1
G([[ϕ]]M).

Let EMC
n be the smallest set of formulas that contains all tautologies in the above language;

contains all instances of the following axiom schemes; and is closed under the following
rules:

(RMn)
ϕ→ ψ
�iϕ→ �iψ

(CB) �∗Gϕ→ �Gϕ

(FP1) �∗Gϕ→ �G�∗Gϕ

(FP2)
(ϕ→ �Gϕ) ∧ (ϕ→ �Gψ)

ϕ→ �∗Gψ

It a simple (and illuminating!) exercise to show that EMC
n is sound for the class of

monotonic multi-agent neighborhood models.

Proposition 3.33 The logic EMC
n is sound for the class of monotonic multi-agent neighborhood

models.

Proof. The rule (RMn) is the generalization of the monotonicity rules that we already
know is valid on the class of monotonic neighborhood frames (cf. Theorem 2.66). The
proof that the rule (FP2) is valid is a direct consequence of the characterization of the
common belief operator given in (∗). We conclude by proving that (CB) and (FP1) are
valid. Suppose thatM = 〈W, {Ni}i∈A,V〉 is a monotonic multi-agent neighborhood model
and w ∈ W. Suppose thatM,w |= �∗Gϕ. Then, there is a G-evident set X ⊆ W such that
w ∈ X and X ⊆ mG([[ϕ]]M). Thus, X ⊆ mG(X) ∩ mG([[ϕ]]M). Since mG([[ϕ]]M) = [[�Gϕ]]M
and w ∈ X, we have that M,w |= �Gϕ. Thus, (CB) is valid. Furthermore, by (∗), we
have X ⊆ C1

G([[ϕ]]M) = [[�∗Gϕ]]M. Now, X is G-evident and, by monotonicity, we have that
w ∈ X ⊆ mG(X) ⊆ mG([[�∗Gϕ]]M) = [[�G�∗Gϕ]]M, which implies thatM,w |= �G�∗Gϕ. Thus,
(FP1) is valid. qed

Exercise 74 Prove that if `EMC
n
ϕ→ ψ, then `EMC

n
�∗Gϕ→ �

∗

Gψ.

The discussion so far has focused on the use of evident sets to define common belief.
This is the so-called fixed-point definition of common belief (cf. Heifetz, 1999; Barwise,
1987). How is this fixed-point definition related to the iterative characterization of com-
mon belief that was referenced in the first paragraph of this subsection? For each k ∈ N,
let �k

Gϕ be the formula that consists of a sequence of k + 1 everyone believes modali-
ties. Formally, let �0

Gϕ = �Gϕ and for k > 0, �k
Gϕ = �G(�k−1

G ϕ). The first observation is
that for each k ∈ N, �∗Gϕ → �

k
G is valid. When k = 0, this is just the validity of axiom

(CB). The proof that for each k > 0, �∗Gϕ → �
k
G is valid proceeds by induction on k.

The key observation is that if w ∈ C1
G([[ϕ]]M), then there is a G-evident set X such that
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w ∈ X ⊆ mG(X) ∩ mG([[ϕ]]M). By monotonicity, we have that mG(X) ⊆ mG(mG([[ϕ]]M)).
Since X is G-evident, we have that w ∈ X ⊆ mG(X) ⊆ mG(mG([[ϕ]]M)). We can continue in
this manner to show thatM,w |= �k

Gϕ for any k > 0. I leave it to the reader to show that
the above argument can be reproduced inside the logic.

Exercise 75 Prove that `EMC
n
�∗Gϕ→ �

k
Gϕ for all k ∈N.

Thus, the truth of �∗Gϕ implies that each of the formulas in the set {�k
Gϕ | k ∈ N} are true.

That is, common belief in ϕ implies that everyone believes that ϕ and everyone believes
that everyone believes that ϕ, and so on. Of course, this cannot be expressed in our
language since the language contains only finite conjunctions. Setting aside questions
about expressing infinite conjunctions in the language, there is still a question about
whether we can conclude that �∗Gϕ is true if we know that conjunctions of formulas from
{�k

Gϕ | k ∈ N} are true. There are two key issues that arise when the neighborhoods are
not closed under intersections. The first issue is that there is more than one way to form
intersections from the set {[[�k

Gϕ]]M | k ∈ N}. Since the neighborhoods are not closed
under intersections, it is not hard to find a set X such that:

mG(X ∩mG(X)) , mG(X) ∩mG(mG(X)).

Each side of this inequality can be used to form infinite conjunctions of everyone believes
statements. It turns out that the right-hand side corresponds to the first version of common
belief from Definition 3.32. For a set X ⊆ W, define Xα, where α is any infinite cardinal,
by transfinite induction:

X0 = mG(X)
Xα =

⋂
β<α Xβ ∩mG(

⋂
β<α Xβ)

Note that the above sequence of sets is decreasing. Thus, for any set W, there must be
some µ such that Xµ = Xµ+1. This brings us to the second issue. In general, µ may not
be ℵ0 (the first countable cardinal). That is,

⋂
n∈N Xn may contain states that are not in

mG(
⋂

n∈N Xn). This is very different from the situation with common belief (knowledge)
defined on relational structures. It is not hard to see that on relational structures, for any
set X, Xα must stabilize at ℵ0.

Exercise 76 Suppose that M = 〈W, {Ni}i∈A,V〉 is a multi-agent neighborhood model in which
each Ni is augmented. For any X ⊆W, prove that Xα stabilizes when α = ℵ0.

The main result of this short section is that the above definition of (possibly transfinite)
iterations of the everyone believes operator corresponds to the definition of common belief
from Definition 3.32.

Proposition 3.34 Suppose thatM = 〈W, {Ni}i∈A,V〉 is a monotonic multi-agent neighborhood
model. For any set Y ⊆ W and set G ⊆ A, C1

G(Y) = Yµ, where µ is the least cardinal such that
Yµ = Yµ+1.
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Proof. Suppose that µ is the smallest cardinal such that Yµ = Yµ+1. We must show that
C1

G(Y) = Yµ. We proceed in two steps.
Claim 1: Yµ ⊆ C1

G(Y). Suppose that w ∈ Yµ. Since Y0,Y1, . . . ,Yµ is a decreasing
sequence, we have

⋂
β<µ+1 Yβ = Yµ. Thus, Yµ+1 =

⋂
β<µ+1 Yβ ∩ mG(

⋂
β<µ+1 Yβ) = Yµ ∩

mG(Yµ). Since Yµ = Yµ+1 = Yµ ∩ mG(Yµ), we have Yµ ⊆ mG(Yµ). Thus, Yµ is evident.
Furthermore, Yµ ⊆ Y0 = mG(Y). Thus, there is an evident set containing w that implies
that everyone believes Y. Hence, w ∈ C1

G(Y).
Claim 2: C1

G(Y) ⊆ Yµ. Suppose that w ∈ C1
G(Y). Then, there is a X ⊆ W such that

X ⊆ mG(X), w ∈ X and X ⊆ mG(Y). We prove by transfinite induction on α that X ⊆ Yα.
The base case is X ⊆ Y0 = mG(Y). This follows by assumption. Suppose that for all β < α,
X ⊆ Yβ. We must show that X ⊆ Yα. By the induction hypothesis, we have X ⊆

⋂
β<α Yβ.

By monotonicity and the fact that X is evident, we have,

X ⊆ mG(X) ⊆ mG(
⋂
β<α

Yβ).

Hence, X ⊆
⋂
β<α Yβ ∩mG(

⋂
β<α Yβ) = Yα. qed

The second version of the definition of common belief is from Lismont and Mongin
(1994b,a).

Definition 3.35 (Common Belief, version 2) Suppose thatM = 〈W, {Ni}i∈A,V〉 is a mono-
tonic multi-agent neighborhood model. For each G ⊆ A, define a function C2

G : ℘(W) →
℘(W) as follows:

C2
G(Y) = {w | there is a G-evident set X such that w ∈ mG(X) and X ⊆ Y}. /

This definition of common belief corresponds to the second way to form conjunctions of
everyone believes statements. For a set X ⊆W, define X̂α, where α is any infinite cardinal,
by transfinite induction:

X̂0 = mG(X)
X̂α = mG(X ∩

⋂
β<α X̂β)

This version of common beliefs satisfies many of the same properties as the first version.

Exercise 77 Suppose thatM = 〈W, {Ni}i∈A,V〉 is a monotonic multi-agent neighborhood model.
Let �?G be a modal operator with the truth clauseM,w |= �?Gϕ iff w ∈ C2

G([[ϕ]]M).

1. Prove that for any set Y ⊆ W and set G ⊆ A, C2
G(Y) = Ŷµ, where µ is the least cardinal

such that Ŷµ = Ŷµ+1.

2. Prove that �?Gϕ→ �Gϕ and �?Gϕ→ �G�?Gϕ are valid.

3. Find a variant of (FP2) that is valid for the �?G modality (cf. Lismont and Mongin, 1994a).
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I conclude this subsection by clarifying the relationship between the two versions of
common belief.

Proposition 3.36 Suppose thatM = 〈W, {Ni}i∈A,V〉 is a monotonic multi-agent neighborhood
model. For any set Y ⊆W, C2

G(Y) ⊆ C1
G(Y).

Proof. Suppose that w ∈ C2(Y). Then, there exists an evident set X ⊆ W such that
w ∈ mG(X) and X ⊆ Y. Thus, by monotonicity, we have mG(X) ⊆ mG(mG(X)) and
mG(X) ⊆ mG(Y). Hence, mG(X) is an evident set containing w, which implies that everyone
believes that Y. Thus, w ∈ C1(Y). qed

The converse of Proposition 3.36 is not true. That is, there is a model with a set
Y such that C1

G(Y) * C2
G(Y). Suppose that W = {w, x, y} and all agents have the same

neighborhood function N : W → ℘(℘(W)):

• N(w) = {{w}, {v}, {x}, {w, v}, {w, x}, {v, x}, {w, v, x}}

• N(v) = {{w, v}, {w, x}, {v, x}, {w, v, x}}

• N(x) = {{w, v, x}}

Then, X = {w} is evident: mA({w}) = {w}. This implies that w ∈ C1
A

({v, x}) since w ∈ X, X is
evident and X ⊆ mA({v, x}) = {w, v}. However, w < C2

A
({v, x}). To see this, note that there

are no subsets of {v, x} that are evident (mA({v}) = mA({x}) = {w}, mA({v, x}) = {w, v}).6

There is much more to say about common belief on neighborhood structures. For
instance, there is the question of completeness for languages with each of the above
two versions of common belief. Heifetz (1996) proved that EMC

n is weakly complete7 with
respect to the class of monotonic multi-agent neighborhood models. Lismont and Mongin
(1994b; 1994a) provide a weak completeness result for the second definition of common
belief. Interestingly, Lismont and Mongin (2003) show that by weakening monotonicity,
they can prove a strong completeness result for weak modal logics with the above common
belief operators. The details of this fascinating result are beyond the scope of this section.
Consult Heifetz (1999), (Lismont, 1995), and Barwise (1987) to clarify the relationship
between the fixed-point and iterative definitions of common belief. Finally, van Benthem
and Sarenac (2004) have an extensive discussion of different notions of group knowledge
in the topological models from Section 1.4.1.

6Technically, the emptyset ∅ is evident since ∅ = mG(∅); however, w < mG(∅). Notice that if ∅ is in everyone’s
neighborhood, then, according to the definition of C2

G, every event will be common believed.
7See Definition A.31 for the difference between strong and weak completeness. It is well known that, in

general, logics with common belief operators are not compact, and so cannot be strongly complete.
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3.4 Dynamics with Neighborhoods: Game Logic

Suppose that two agents, say Abelard (A) and Eloise (E), are playing a game. 8 Say that
Eloise can force a set of outcomes X if she has a strategy9 such that, regardless of Abelard’s
choice of strategy, the outcome of the game will be some element of X. 10 This notion
of forcing gives rise to a relation for each player between game states and sets of sets of
outcomes. It is not hard to see that the collection of sets that a player can force is closed
under supersets (if a player can force X and X ⊆ Y, then that player can force Y), but not
closed under intersections (essentially, this follows from the fact that the other player can
influence the outcome of the game).

Suppose that W , ∅ is a set of states, and let ρA
⊆ ℘(W) and ρE

⊆ ℘(W) be collections
of sets that are intended to represent the powers of A and E, respectively, in some game.
That is, each set in ρA is intended to be a set of outcomes that A can force by some strategy
in a game. It is natural to impose the following constraints on these sets:

Monotonicity: For all sets of outcomes X and Y, for all players i ∈ {A,E}, if X ∈ ρi

and X ⊆ Y, then Y ∈ ρi.

Consistency: For any set of outcomes X, for each player i ∈ {E,A}, if i can force X,
then the other player cannot force W − X. Formally, for all X and all i ∈ {E,A}, if
X ∈ ρi, then W − X < ρ−i.

In addition, in this section, I will restrict my analysis to games that are determined in the
following sense:

Determined: For any set of outcomes X, for each player i ∈ {E,A}, if a player
cannot force X, then the other player cannot force W −X. Formally, for all X and all
i ∈ {E,A}, if X < ρi, then W − X ∈ ρ−i, where −i is the other player (i.e., if i = E, then
−i = A).

For example, suppose that W = {1, 2, 3}, and consider the following two collections of
subsets ρA

⊆ ℘(W) and ρE
⊆ ℘(W).

ρE = {{1}, {2, 3}, {1, 2}, {1, 3}, {1, 2, 3}}

ρA = {{1, 2}, {1, 3}, {1, 2, 3}}

8For this section, it is useful to have some basic understanding of game theory (Leyton-Brown and Shoham,
2008). In Section 1.4.5, I introduced strategic games (Definition 1.46). In this section, I will also discuss extensive
games. These are games in which the players do not necessarily make their choices simultaneously. I will
restrict attention to two-player games in which the players take turns making moves. These are represented
by trees in which the edges are labeled by actions, and each non-terminal node is associated with a player
whose turn it is to move. The terminal nodes assign a payoff to each of the players.

9A strategy for Eloise (in an extensive game) is a function that assigns an action at each of her choice
nodes.

10Recall the example used when discussing the logic of ability in Section 1.3.
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As the reader is invited to check, these sets satisfy the above three properties. Van
Benthem (2003) proved that any pairs of collections of sets satisfying the above three
properties are the powers of the two players in some two-move finite game. 11 The
main idea of the proof is to construct a game in which the actions for player i are the sets
in the non-monotonic core of ρi. The outcome, given the choices for each player, is the
intersection of the sets that each player chooses (the above properties guarantee that this
set is non-empty). For instance, the above sets ρE and ρA are the sets that the players can
force in the following game:

A

B B

{1} {1} {2} {3}

{1} {2, 3}

{1, 2} {1, 3} {1, 2} {1, 3}

Exercise 78 Find at least two other games such that ρE and ρA are the sets that E and A can
force. What can you say about the relationship between these different games?

Parikh (1985) introduced Game Logic as a generalization of propositional dynamic logic
(PDL)12 for reasoning about two-person determined games. In PDL, the modalities are
labeled with expressions that are intended to describe a program. That is, PDL includes
formulas of the form [α]ϕ, whereα is a description of a program. The intended meaning of
〈α〉ϕ is that some execution of α ending in a state that satisfies ϕ is true, and the intended
meaning of [α]ϕ is that every execution ofα ends in a state satisfyingϕ. Parikh’s main idea
is to view the labels of the modalities as descriptions of two-person determined games.
The modalities then describe the players’ powers in the game. That is, 〈γ〉ϕ is intended to
mean that Eloise has a strategy in the game, described by γ, that guarantees that ϕ is true;
and [γ]ϕ is intended to mean that Abelard has a strategy in the game, described by γ, that
guarantees that ϕ is true. In the remainder of this section, I will introduce game logic.
Consult van Benthem (2014) and Pauly and Parikh (2003) for a more in-depth discussion
of this logic and related topics.

Syntax and Semantics Suppose that Gm = {g1, . . . , gn, . . .} is a finite or countable set
of primitive game expressions, and At is a finite or countable set of atomic propositions.

11Cf. Bonanno (1992) for a related discussion.
12See (Harel et al., 2000) for a discussion of propositional dynamic logic and its applications for reasoning

about programs. See also Peleg (1987); Goldblatt (1992b); van Benthem et al. (2008) and Pacuit and Simon
(2011) for variations of propositional dynamic logic related to topics discussed in this section.
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Formulas of game logic are generated by mutual recursion:

p | ¬ϕ | (ϕ ∧ ψ) | 〈γ〉ϕ

g | (γ;γ′) | (γ ∪ γ′) | γ∗ | γd

where g ∈ Gm and p ∈ At. Let LG denote the set of formulas of game logic. The
Boolean connectives are defined as usual. Furthermore, define [γ]ϕ ad ¬〈γ〉¬ϕ. Each
game expression γ is intended to describe a determined game between two players. The
intended meanings of the game operations are:

• γ1;γ2: First play γ1; then play γ2 (game composition).

• γ1 ∪ γ2: Eloise chooses which of γ1 or γ2 to play (choice).

• γ∗: Eloise can choose how often to play γ (possibly not at all), and each time she has
played γ, she can decide whether or not to play it again (iteration).

• ?ϕ: Test whether ϕ currently holds (test).

• γd: Eloise and Abelard switch roles, then play γ (dual).

Using the dual operator, there are analogues of the choice and iteration operations for
Abelard:

• γ1 ∩ γ2 := (γd
1 ∪ γ

d
2)d: Abelard chooses which of γ1 or γ2 to play.

• γ× := ((γd)∗)d: Abelard can choose how often to play γ (possibly not at all), and each
time he has played γ, he can decide whether or not to play it again.

The formula 〈γ〉ϕ expresses that Eloise has a strategy in the game γ to achieve ϕ.
Then, [γ]ϕ means that Eloise does not have a strategy to guarantee that γ ends in a state
satisfying ¬ϕ. By determinacy, this means that Abelard has a strategy to guarantee that
the game γ ends in a state satisfying ϕ.

Models for the game logic language LG include neighborhood functions for each
primitive game operation. That is, a game logic model is a tuple 〈W, {Ng}g∈Gm,V〉, where
W is a non-empty set of states; for each g ∈ Gm, Ng : W → ℘(℘(W)) is a monotonic
neighborhood function (i.e., for all w ∈ W and X,Y ⊆ W, if X ∈ Ng(w) and X ⊆ Y, then
Y ∈ Ng(w)); and V : At → ℘(W) is a valuation function. It is convenient to treat the
neighborhood functions as relations Ng ⊆W × ℘(W) (cf. Remark 1.13).

Truth of the formulas fromLG at a state w in a modelM = 〈W, {Ng}g∈Gm,V〉 is defined
as usual (cf. Definition 1.15). I give only the clause for the modal operator:

M,w |= 〈γ〉ϕ iff wNγ[[ϕ]]M.

where Nγ ⊆W×℘(W) is the relation associated with the complex game γ. This relation is
defined by induction on the structure of γ. For any N ⊆W×℘(W), let N← : ℘(W)→ ℘(W)
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denote the function where, for all X ∈ ℘(W), N←(X) = {w |wNX}. To simplify the notation,
I write Nγ instead of N←γ . Given a set {Ng}g∈Gm of neighborhood functions for the primitive
game expressions, define relations Nγ for each game expression γ by recursion as follows:

Nγ1;γ2(Y) = Nγ1(Nγ2(Y))
Nγ1∪γ2(Y) = Nγ1(Y) ∪Nγ2(Y)

N?ϕ(Y) = [[ϕ]]M ∩ Y
Nγd(Y) = W −Nγ(W − Y)
Nγ∗(Y) = µX.Y ∪Nγ(X)

The last clause requires some additional explanation. Given a set Y ⊆ W and a game
expression γ, let FY : ℘(X)→ ℘(X) be the function Fγ,Y(X) = Y∪Nγ(X). Then, µX.Y∪Nγ(X)
is the least fixed-point of the function Fγ,Y.

Fixed Points Consider any monotonic function on the nonempty set of states S—i.e., a
function F : ℘(S)→ ℘(S) such that for X,Y ∈ ℘(S), X ⊆ Y implies F(X) ⊆ F(Y). A set Z ⊆ S
is a fixed point of F iff F(Z) = Z. Furthermore, Z is the least (greatest) fixed-point of F
iff 1. Z is a fixed-point of F and 2. if Z′ is a fixed-point of F, then Z ⊆ Z′ (Z′ ⊆ Z). Let
µX.F(X) denote the least fixed-point of F and νX.F(X) denote the greatest fixed-point of
F. The famous Knaster-Tarski fixed-point theorem shows that fixed points of monotonic
functions always exist:

Theorem 3.37 (Knaster-Tarski Fixed-Point Theorem) Suppose that F is a monotonic func-
tion F : ℘(S)→ ℘(S). Then, F has a least and greatest fixed-point:

µX.F(X) =
⋂
{Y | Y ⊆ S,F(Y) = Y} =

⋂
{Y | Y ⊆ S,F(Y) ⊆ Y}

νX.F(X) =
⋂
{Y | Y ⊆ S,F(Y) = Y} =

⋂
{Y | Y ⊆ S,F(Y) ⊇ Y}

Thus, if we can show that Nγ : ℘(W) → ℘(W) is monotonic for all γ, then by the
Knaster-Tarski Fixed-Point Theorem, Nγ∗ is guaranteed to exist. For the atomic game
expressions g ∈ Gm, it is assumed that Ng is monotonic. The proof that monotonicity lifts
to all game expressions is left as an exercise.

Exercise 79 Prove that for all game expressions γ, Nγ : ℘(W)→ ℘(W) is monotonic.

Results Much of the work on game logic has focused on comparing the expressivity of
the language to related logical systems, such as propositional dynamic logic (Pauly, 2001;
Parikh, 1985) and the modal mu-calculus (Berwanger, 2003; Pauly, 2001; Parikh, 1985).
To get a sense of the expressive power of game logic, consider the following result from
Parikh (1985). First of all, note that there are two ways for a player to satisfy a goal ϕ. The
first way is to have a strategy that guarantees that ϕ is true. The second way is to find a
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strategy that forces the other player to violate the rules of the game. That is, 〈γ〉ϕ is true
if either E has a strategy in γ that forces ϕ to be true or if E has a strategy that forces the
game into a position in which it is not possible for A to choose a move that conforms to
the rules of the game described by γ. For example, suppose that a describes a game in
which E is the only player to move, but E must make a move. Then, we can think of a as
describing a relation Ra. Given this interpretation of a, the formula 〈a〉> is true at a state
w as long as E has an available move at w (i.e., if there is an Ra-accessible state from w).
Furthermore, the only way that 〈ad

〉⊥ is true at a state w is if there is no available move for
A at the state w (i.e., w is a dead-end state for the relation Ra). Now, consider the formula
〈(ad)∗〉⊥. The only way for this formula to be true is for E to keep playing the game ad

until A does not have an available move. Thus, 〈(ad)∗〉⊥ is true iff the relation associated
with a is well-founded (i.e., every set of states X has an element w ∈ X such that w R x for
all x ∈ X). This is not something that can be expressed in PDL (though it can be expressed
in the modal µ-calculus).

The main tools needed for a comprehensive study of the expressivity of game logic
are the model constructions from Section 2.1. In particular, the appropriate notion of
equivalence between game models is a monotonic bisimulation (Definition 2.2). It is
straightforward to adapt this definition to models of game logic. In addition, it can be
shown that the operations on game expressions (sequential composition, choice, iteration,
and test) are safe for bisimulation. That is, the definition of a monotonic bisimulation for
each primitive game expression g ∈ Gm can be lifted to all game expressions γ. The proof
of this is left as an exercise.

Exercise 80 Suppose thatM = 〈W, {Ng}g∈Gm,V〉 andM′ = 〈W′, {N′g}g∈Gm,V′〉 are two models
of game logic. Suppose that Z is a monotonic bisimulation betweenM andM′. Prove that for
all game expressions γ, Z is a monotonic bisimulation for Nγ. That is, show that for all game
expressions γ, the neighborhood function Nγ satisfies the clauses in Definition 2.2.

I conclude this introduction to Game Logic with a brief discussion of axiomatizations.
It is not hard to see that each modality 〈γ〉 is a monotonic modal operator. That is, for
each game expression γ, the monotonicity rule is valid:

(Monγ)
ϕ→ ψ

〈γ〉ϕ→ 〈γ〉ψ

In addition, the following “reduction axioms” correspond to the construction rules
for complex game expressions.

(composition) 〈γ1;γ2〉ϕ↔ 〈γ1〉〈γ2〉ϕ

(choice) 〈γ1 ∪ γ2〉ϕ↔ 〈γ1〉ϕ ∨ 〈γ2〉ϕ

(fixedpoint) 〈γ∗〉ϕ↔ ϕ ∨ 〈γ〉〈γ∗〉ϕ

(test) 〈?ψ〉ϕ↔ ψ ∧ ϕ

(dual) 〈γd
〉 ↔ [γ]ϕ
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Finally, the following rule is valid since γ∗ is interpreted as a least fixed-point operator:

(LFP)
〈γ〉ϕ→ ϕ
〈γ∗〉ϕ→ ϕ

Exercise 81 Prove that each of the above reduction axioms is valid over the class of game logic
models. Also prove that the (LFP) rule is valid.

Let GmL be the smallest set of formulas that contains all tautologies in the language
L

G; is closed under Modus Ponens; is closed under the (Monγ) rules; contains all instances
of the above reduction axiom schemes; and is closed under the (LFP) rule. Write GmL−d

for GmL without the dual axiom (dual) and GmL−∗ for GmL without the fixed-point
axiom (fixedpoint) and the (LFP) rule. The two main theorems about completeness of
Game Logic are:

Theorem 3.38 (Parikh, 1985) For the language of game logic without the dual operator ( ·d),
the logic GmL−d is sound and weakly complete with respect to the class of game models.

Theorem 3.39 (Pauly, 2001) For the language of game logic without the fixed-point operator
( ·∗), the logic GmL−∗ is sound and strongly complete with respect to the class of game models.

The completeness of full game logic GmL has been open since Parikh introduced Game
Logic in 1985.

Remark 3.40 (The induction axiom) Let GmLK be the the logic that extends GmL with
the additional axiom schemes:

〈g〉(ϕ ∨ ψ)→ (〈g〉ϕ ∨ 〈g〉ψ) ¬〈g〉⊥

where g ∈ Gm is an atomic game expression. Familiar from the literature on propositional
dynamic logic (Harel et al., 2000), the induction axiom is:

〈γ∗〉ϕ→ (ϕ ∨ 〈γ∗〉(¬ϕ ∧ 〈γ〉ϕ))

See Pauly (2001, Section 7.3) for a proof that the induction axiom is derivable in GmL−d
K ,

but not in GmLK.

3.5 Dynamics on Neighborhood Structures

The final section of this book is focused on recent dynamic logics of knowledge update
(van Benthem, 2011) and belief revision (van Benthem, 2004; Baltag and Smets, 2006b).13

These logics include informational actions that change the models. Examples range from

13Consult Pacuit (2013b) for a shorter survey of this research area.
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“hard” information provided by public announcements or public observations (Plaza, 1989;
Gerbrandy, 1999) to softer signals encoding different policies of belief revision (cf. Rott,
2006) by radical or conservative upgrades of plausibility orderings. Many of the ideas
from this literature can be adapted to the neighborhood setting (cf. Zvesper, 2010; van
Ditmarsch et al., 2015; van Benthem and Pacuit, 2011; Ma and Sano, 2015). A complete
overview of this literature is beyond the scope of this book. In this section, I focus on
two key topics from this research area. The first subsection discusses the definition of
public announcements in neighborhood models. The second subsection is an abbreviated
discussion of evidence dynamics from van Benthem and Pacuit (2011).

3.5.1 Public Announcements

The simplest type of information change is receiving information from an infallible source.
This operation, called public announcement (Plaza, 1989), transforms a model by removing
all states where the announced formula is false. Following the presentation in Ma and
Sano (2015), I explain two different ways to define public announcements in neighborhood
models.

For simplicity, in this section, I focus on single-agent neighborhood models. Suppose
thatM = 〈W,N,V〉 is a monotonic neighborhood model. A public announcement of ϕ in
M transformsM into a submodel in which the set of states is [[ϕ]]M. The question is how
to define the neighborhood function in this submodel. Ma and Kato (2015) propose two
different ways to answer this question.

Definition 3.41 (Intersection/Subset Submodel) Suppose thatM = 〈W,N,V〉 is a mono-
tonic neighborhood model (with At the set of atomic propositions) and ∅ , X ⊆ W. The
intersection (subset) submodel ofM isM?X = 〈X,N?X,V?X

〉, for ? ∈ {∩,⊆}, where for
all p ∈ At, V?X(p) = V(p)∩X and N?X : X→ ℘(℘(X)) are defined as follows: for all w ∈ X,

N∩X(w) = {Y | Y = Z ∩ X for some Z ∈ N(w)}.

N⊆X(w) = {Y | Y ⊆ X and Y ∈ N(w)}.

We writeM?ϕ forM?[[ϕ]]M . /

Exercise 82 Suppose that F = 〈W,N〉 is monotonic. Prove that F ∩X = 〈X,N∩X
〉 and F ⊆X =

〈X,N⊆X
〉 are both monotonic.

Exercise 83 Show that the following properties are preserved by the (.)∩X and (.)⊆X operations on
models (cf. Ma and Sano, 2015, Proposition 3).

• For each w ∈W and X,Y ⊆W, if X ∈ N(w) and Y ∈ N(w), then X ∩ Y ∈ N(w).

• For each w ∈W, w ∈
⋂

N(w).

• For each w ∈W, if X ∈ N(w), then {v | X ∈ N(v)} ∈ N(w).
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To reason about the above model transformations, we extend the basic modal language
with public announcement operators. Suppose that At is a set of atomic propositions.
The full language contains modal operators corresponding to the two operations from
Definition 3.41:

p | ¬ϕ | (ϕ ∧ ψ) | �ϕ | [ϕ]∩ψ | [ϕ]⊆ψ

where p ∈ At. The additional Boolean connectives are defined as usual. Let L∩ be the
fragment of the above language in which the only dynamic modalities are [ϕ]∩, and L⊆

is the fragment in which the only dynamic modalities are [ϕ]⊆. Truth is defined as in
Definition 1.15, with the following clauses for the new modalities:

• M,w |= [ϕ]∩ψ iffM,w |= ϕ implies thatM∩ϕ,w |= ψ.

• M,w |= [ϕ]⊆ψ iffM,w |= ϕ implies thatM⊆ϕ,w |= ψ.

For ? ∈ {∩,⊆}, let 〈ϕ〉?ψ be ¬[ϕ]?¬ψ. Then, the truth clause for this formula is

M,w |= 〈ϕ〉?ψ iffM,w |= ϕ andM?ϕ,w |= ψ.

The standard approach to axiomatizing languages with public announcement opera-
tors is to find so-called recursion axioms. Recursion axioms provide an insightful syntactic
analysis of public announcements that complements the semantic analysis: The recur-
sion axioms describe the effect of an announcement in terms of what is true before the
announcement. Consult van Benthem (2011) for a general discussion of the recursion-
axiom methodology. The recursion axioms for the languages L∩ and L⊆ are:

(PA1) [ϕ]?p ↔ (ϕ→ p) (p ∈ At, ? ∈ {∩,⊆})

(PA2) [ϕ]?(ψ ∧ χ) ↔ ([ϕ]?ψ ∧ [ϕ]?χ) (? ∈ {∩,⊆})

(PA3) [ϕ]?¬ψ ↔ (ϕ→ ¬[ϕ]?ψ) (? ∈ {∩,⊆})

(PA4) [ϕ]?[ψ]?χ ↔ [ϕ ∧ [ϕ]?ψ]χ (? ∈ {∩,⊆})

(PA∩) [ϕ]∩�ψ ↔ (ϕ→ �[ϕ]∩ψ)

(PA⊆) [ϕ]⊆�ψ ↔ (ϕ→ �〈ϕ〉⊆ψ)

Exercise 84 Prove that the recursion axioms (PA1) - (PA4) are valid.

Lemma 3.42 The formula [ϕ]∩�ψ↔ (ϕ→ �[ϕ]∩ψ) is valid on monotonic models.

Proof. Suppose thatM = 〈W,N,V〉 is a monotonic neighborhood model. First, note that
an immediate consequence of the truth of [ϕ]∩ψ is that:

(∗) [[[ϕ]∩ψ]]M = (W − [[ϕ]]M) ∪ [[ψ]]M∩ϕ .
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Claim 1: M,w |= [ϕ]∩�ψ → (ϕ → �[ϕ]∩ψ). Proof: Suppose that M,w |= [ϕ]∩�ψ
and M,w |= ϕ. Then, M∩ϕ,w |= �ψ. This implies that [[ψ]]M∩ϕ ∈ N∩ϕ(w). By the
definition of N∩ϕ, there is a Y ∈ N(w) such that [[ψ]]M∩ϕ = Y ∩ [[ϕ]]M. By basic set
theory, we have that Y ⊆ (W − [[ϕ]]M) ∪ [[ψ]]M∩ϕ . Since N is monotonic and Y ∈ N(w), we
have that (W − [[ϕ]]M) ∪ [[ψ]]M∩ϕ ∈ Ni(w). Therefore, by (∗), M,w |= �[ϕ]∩ψ. Therefore,
M,w |= [ϕ]∩�ψ→ (ϕ→ �[ϕ]∩ψ).

Claim 2: M,w |= (ϕ → �[ϕ]∩ψ) → [ϕ]∩�ψ. Proof: Suppose that M,w |= ϕ →
�[ϕ]∩ψ. We must show thatM,w |= [ϕ]∩�ψ. That is, we must show thatM∩ϕ,w |= �ψ.
Suppose thatM,w |= ϕ. Therefore,M,w |= �[ϕ]∩ψ. This implies that [[[ϕ]∩ψ]]M ∈ N(w).
By (∗) and the fact that [[ψ]]M∩ϕ ⊆ [[ϕ]]M, we have that

[[[ϕ]∩ψ]]M ∩ [[ϕ]]M = ((W − [[ϕ]]M) ∪ [[ψ]]M∩ϕ) ∩ [[ϕ]]M
= ((W − [[ϕ]]M) ∩ [[ϕ]]M) ∪ ([[ψ]]M∩ϕ ∩ [[ϕ]]M)
= [[ψ]]M∩ϕ ∩ [[ϕ]]M
= [[ψ]]M∩ϕ .

Since [[[ϕ]∩ψ]]M ∈ N(w), we have that [[ψ]]M∩ϕ ∈ N∩ϕ(w). Thus,M∩ϕ,w |= �ψ. Therefore,
M,w |= [ϕ]∩�ψ; and so,M,w |= (ϕ→ �[ϕ]∩ψ)→ [ϕ]∩�ψ. qed

Lemma 3.43 The formula [ϕ]⊆�ψ↔ (ϕ→ �〈ϕ〉⊆ψ) is valid on monotonic models.

Proof. Suppose thatM = 〈W,N,V〉 is a monotonic neighborhood model. First, note that,
by construction ofM⊆ϕ, we have that [[ψ]]M⊆ϕ ⊆ [[ϕ]]M. Thus, [[ψ]]M⊆ϕ ∩ [[ϕ]]M = [[ψ]]M⊆ϕ .
Then, by the definition of truth for 〈ϕ〉⊆ψ,

[[〈ϕ〉⊆ψ]]M = [[ϕ]]M ∩ [[ψ]]M⊆ϕ = [[ψ]]M⊆ϕ .

In addition, for all formulas ϕ and ψ, we have that

[[ϕ ∧ [ϕ]⊆ψ]]M = [[ϕ]]M ∩ [[[ϕ]⊆ψ]]M
= [[ϕ]]M ∩ ((W − [[ϕ]]M) ∪ [[ψ]]M⊆ϕ)
= ([[ϕ]]M ∩ (W − [[ϕ]]M)) ∪ ([[ϕ]]M ∩ [[ψ]]M⊆ϕ)
= ∅ ∪ ([[ϕ]]M ∩ [[ψ]]M⊆ϕ)
= [[ϕ]]M ∩ [[ψ]]M⊆ϕ
= [[ψ]]M⊆ϕ .

Putting everything together, we have that

(∗) [[〈ϕ〉⊆ψ]]M = [[ϕ ∧ [ϕ]⊆ψ]]M = [[ψ]]M⊆ϕ .

Claim 1: M,w |= [ϕ]⊆�ψ → (ϕ → �〈ϕ〉⊆ψ) Proof. Suppose that M,w |= [ϕ]⊆�ψ
and M,w |= ϕ. Then, M⊆ϕ,w |= �ψ. This means that [[ψ]]M⊆ϕ ∈ N⊆ϕ(w). This means
that [[ψ]]M⊆ϕ ⊆ [[ϕ]]M and [[ψ]]M⊆ϕ ∈ N(w). By (∗), [[〈ϕ〉⊆ψ]]M = [[ψ]]M⊆ϕ ∈ N(w). Hence,
M,w |= �〈ϕ〉⊆ψ, as desired.
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Claim 2: M,w |= (ϕ→ �〈ϕ〉⊆ψ)→ [ϕ]⊆�ψ Proof. Suppose thatM,w |= ϕ→ �〈ϕ〉⊆ψ.
We must show that M,w |= [ϕ]⊆�ψ. Assume that M,w |= ϕ. Then, M,w |= �〈ϕ〉⊆ψ.
Thus, [[〈ϕ〉⊆ψ]]M ∈ N(w). By (∗), [[〈ϕ〉⊆ψ]]M = [[ϕ ∧ [ϕ]⊆ψ]]M ⊆ [[ϕ]]M. By the definition of
N⊆ϕ and (∗), we have that [[ψ]]M⊆ϕ = [[〈ϕ〉⊆ψ]]M ∈ N⊆ϕ(w). Thus,M⊆ϕ,w |= �ψ. Hence,
M,w |= [ϕ]⊆�ψ, as desired. qed

Exercise 85 Suppose thatM = 〈W,N,V〉 is augmented. What is the relationship betweenM∩ϕ

andM⊆ϕ?

Consult Ma and Sano (2015) for more details about the above two versions of public
announcements. I conclude this section by discussing another variant of the public
announcement transformation. It is not hard to find a model M = 〈W,N,V〉 and a
formula such that ∅ ∈ N∩ϕ(w), but ∅ < N(w). In such a case, the public announcement of
ϕ makes the agent believe ⊥. An alternative approach ignores any inconsistencies with
the announced formula. 14 Suppose that M = 〈W,N,V〉 is a monotonic neighborhood
model. Given a set X ⊆ W, letMeX = 〈X,NeX,VeX

〉, where VeX is the restriction of V to
X, and NeX is defined as follows, for each w ∈ X:

NeX(w) = {Y | ∅ , Y = X ∩ Z for some Z ∈ N(w)}.

Following the methodology described above, extend the basic modal language L with
modalities [ϕ]eψ with truth defined in the obvious way:

M,w |= [ϕ]eψ iff ifM,w |= ϕ, thenMeϕ,w |= ψ.

Interestingly, the variant of PA∩ is not valid.

Observation 3.44 The formula [ϕ]e�ψ↔ (ϕ→ �[ϕ]eψ) is not valid.

Proof. Suppose that M = 〈W,N,V〉, where W = {w, v}, V(p) = {w}, and N(w) = N(v) =
{{w}, {v}, {w, v}}. Then, Nep(w) = {{w}}. Thus,Mep = 〈{w},Nep,V〉. Then, since [[[p]e⊥]]M =
[[p→ ⊥]]M = [[¬p]]M = {v} ∈ N(w), we have that M,w |= �[p]e⊥. However, since
∅ = [[⊥]]Mep < Nep(w), we have that Mep,w 6|= [p]e�⊥. Thus, M,w 6|= p → [p]e�⊥, but
M,w |= �[p]e⊥. qed

Recursion axioms for this version of the public announcement operator requires a sim-
plified version of the conditional modality from Section 1.4.3.

Definition 3.45 (Conditional neighborhood modality) For formulas ϕ and ψ, let �ϕψ
be a formula, called a conditional neighborhood modality, interpreted at states in a
neighborhood modelM = 〈W,N,V〉 as follows:

14The belief revision literature (Alchourrón et al., 1985) contains a number of different ways to change an
agent’s beliefs given an observation that is inconsistent with the agent’s current beliefs (cf. van Benthem,
2011).
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• M,w |= �ϕψ iff there is a X ∈ N(w) such that X∩ [[ϕ]]M , ∅ and for all v ∈ X∩ [[ϕ]]M,
M, v |= ψ. /

Exercise 86 Prove that �ϕψ is not equivalent to �(ϕ→ ψ).

In this extended language, we can state recursive axioms. Of course, we need recursive
axioms for the new modality in addition to formulas of the form �ψ.

(PAe1) [ϕ]e�ψ ↔ (ϕ→ �ϕ[ϕ]eψ)

(PAe2) [ϕ]e�αψ ↔ (ϕ→ �ϕ∧[ϕ]eα[ϕ]eψ)

I will show that PAe2 is valid and leave the verification that PAe1 is valid as an exercise.

Lemma 3.46 The formula [ϕ]e�αψ ↔ (ϕ → �ϕ∧[ϕ]eα[ϕ]eψ) is valid on monotonic neighbor-
hood models.

Proof. Suppose thatM = 〈W,N,V〉 is a monotonic neighborhood model.
Claim 1: M,w |= [ϕ]e�αψ → (ϕ → �ϕ∧[ϕ]eα[ϕ]eψ). Proof: Suppose that M,w |=

[ϕ]e�αψ and thatM,w |= ϕ. Then,Meϕ,w |= �αψ. This implies that there is a X ∈ Neϕ(w)
such that X ∩ [[α]]Meϕ , ∅ and X ∩ [[α]]Meϕ ⊆ [[ψ]]Meϕ . Since X ⊆ [[ϕ]]M and [[[ϕ]eα]]M =
(W − [[ϕ]]M) ∪ [[α]]Meϕ , we have that X ∩ [[[ϕ]eα]]M = X ∩ [[α]]Me . Furthermore, since
X ∈ Neϕ(w), there is a Y ∈ N(w) such that ∅ , X = Y ∩ [[ϕ]]M. Hence,

Y ∩ [[ϕ ∧ [ϕ]eα]]M = Y ∩ [[ϕ]]M ∩ [[[ϕ]eα]]M = X ∩ [[[ϕ]eα]]M = X ∩ [[α]]Meϕ ⊆ [[ψ]]Meϕ

Therefore, since [[ψ]]Meϕ ⊆ [[[ϕ]eψ]]M and X ∩ [[ϕ]]M ∩ [[[ϕ]eα]]M , ∅, it follows that
M,w |= �ϕ∧[ϕ]eαψ.

Claim 2: M,w |= (ϕ → �ϕ∧[ϕ]eα[ϕ]eψ) → [ϕ]e�αψ. Proof: Suppose that M,w |=
ϕ→ �ϕ∧[ϕ]eα[ϕ]eψ. We must show thatM,w |= [ϕ]e�αψ. Suppose thatM,w |= ϕ. Then,
M,w |= �ϕ∧[ϕ]eα[ϕ]eψ. Then, there is a X ∈ N(w) such that X ∩ [[ϕ ∧ [ϕ]eα]]M , ∅ and
X ∩ [[ϕ ∧ [ϕ]eα]]M ⊆ [[[ϕ]eψ]]M. Then, Y = X ∩ [[ϕ]]M ∈ Neϕ(w). Since [[[ϕ]eχ]]M =
(W − [[ϕ]]M) ∪ [[χ]]Meϕ (for χ = α,ψ), we have

∅ , Y ∩ [[α]]Meϕ ⊆ [[ψ]]Meϕ

Thus,Meϕ,w |= �αψ, and soM,w |= [ϕ]e�αψ. qed

3.5.2 Evidence Dynamics

The evidence models from Section 1.4.4 are a natural setting in which to further study
dynamic operations on neighborhood models. In this final section of the book, I introduce
the dynamic logics of “evidence management” from van Benthem and Pacuit (2011). The
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reader is invited to review the definition of evidence models (Definition 1.41) and truth
for the language Lev (Definition 1.43).

From the perspective of evidence models, the simple public announcement operation
introduced in the previous section is actually a compound of various transformations. A
public announcement of ϕ can be naturally “deconstructed” into a complex combination
of three distinct operations:

1. Evidence addition: the agent accepts that ϕ is an “admissible” piece of evidence
(perhaps on par with the other available evidence).

2. Evidence removal: the agent removes any evidence for ¬ϕ.

3. Evidence modification: the agent incorporates ϕ into each piece of evidence gath-
ered so far, making ϕ the most important piece of evidence.

The evidence models from Section 1.4.4 allow us to study each of these operations indi-
vidually. In the remainder of this section, I briefly discuss the first two operations (see
van Benthem and Pacuit, 2011, for a complete discussion).

LetM be an evidence model and ϕ a new piece of evidence that the agent decides to
accept. Here, “acceptance” does not necessarily mean that the agent believes thatϕ is true,
but, rather, that she agrees that ϕ should be considered when “weighing” her evidence.
The formal definition of this action is straightforward:

Definition 3.47 (Evidence Addition) Suppose thatM = 〈W,E,V〉 is an evidence model,
and ϕ a formula in Lev. The modelM+ϕ = 〈W+ϕ,E+ϕ,V+ϕ

〉 has W+ϕ = W, V+ϕ = V and
for all w ∈W,

E+ϕ(w) = E(w) ∪ {[[ϕ]]M}. /

This operation can be described explicitly with a dynamic modality [+ϕ]ψ, which is
intended to mean that “ψ is true after ϕ is accepted as an admissible piece of evidence”.
The truth condition for this formula is straightforward:

(EA) M,w |= [+ϕ]ψ iff [[ϕ]]M , ∅ impliesM+ϕ,w |= ψ.

Since evidence sets cannot be empty, the precondition for evidence addition is that ϕ is
true at some state. Compare this with the precondition for public announcement from the
previous section, which requires the accepted formula to be true. The recursion axioms
for languages containing only the evidence and universal modalities are:
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[+ϕ]p ↔ (〈A〉ϕ→ p) (p ∈ At)

[+ϕ](ψ ∧ χ) ↔ ([+ϕ]ψ ∧ [+ϕ]χ)

[+ϕ]¬ψ ↔ (〈A〉ϕ→ ¬[+ϕ]ψ)

[+ϕ]〈 ]ψ ↔ (〈A〉ϕ→ (〈 ][+ϕ]ψ ∨ [A](ϕ→ [+ϕ]ψ)))

[+ϕ][A]ψ ↔ (〈A〉ϕ→ [A][+ϕ]ψ)

Exercise 87 Prove that the above axioms are valid on any evidence model.

The complete logical analysis of even this simple operation is surprisingly subtle.
Finding a similar recursion law for the belief operator inLev requires an extension toLev.
See van Benthem and Pacuit (2011) for a discussion.

With a public announcement of ϕ, the agent also agrees to ignore states inconsistent
with ϕ. The latter attitude suggests an act of evidence removal as a natural converse to
addition. While “removal” has been a challenge to dynamic-epistemic logics, our richer
setting suggests a natural logic.

Definition 3.48 (Evidence Removal) Let M = 〈W,E,V〉 be an evidence model, and ϕ a
formula in Lev. The modelM−ϕ = 〈W−ϕ,E−ϕ,V−ϕ〉 has W−ϕ = W, V−ϕ = V, and for all
w ∈W,

E−ϕ(w) = E(w) − {X | X ⊆ [[ϕ]]M}. /

This time, the corresponding dynamic modality is [−ϕ]ψ (“after removing the evidence
that ϕ, ψ is true”), defined as follows: 15

(ER) M,w |= [−ϕ]ψ iff [[ϕ]]M , W impliesM−ϕ,w |= ψ

Finding a recursion axiom for this dynamic modality requires an extension to the
modal language Lev. To motivate the language extension, consider the formula [−ϕ]〈 ]ψ.
This formula is true at a state w when there is evidence at w for ψ that survived the
removal of ϕ. Now, the evidence that survives the removal of ϕ is the evidence that
contains states in which ϕ is false. This suggests a new conditional modality: �(ϕ;ψ) that
is true at a state w in an evidence modelM = 〈W,N,V〉 provided that there is an X ∈ E(w)
such that X ∩ [[ϕ]]M , ∅ and X ⊆ [[ψ]]M. More generally,

15Removing the evidence for ϕ is weaker than the usual notion of contracting one’s beliefs by ϕ in the
theory of belief revision (Rott, 2001). It is possible to remove the evidence for ϕ and yet the agent maintains
her belief in ϕ. Formally, [−ϕ]¬Bϕ is not valid. To see this, let W = {w1,w2,w3} with p true only at w3.
Consider an evidence model with two pieces of evidence: E = {{w1,w3}, {w2,w3}}. The agent believes p and,
since the model does not change when removing the evidence for p, [−p]Bp is true. The same is true for the
model with explicit evidence for p—i.e., E′ = {{w1,w3}, {w2,w3}, {w3}}.
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Definition 3.49 (Instantial neighborhood modality) Suppose thatϕ1, . . . , ϕk, ψare modal
formulas (e.g., formulas from L or Lev). Let �(ϕ1, . . . , ϕk;ψ) be a formula (called an in-
stantial neighborhood modality) interpreted in a neighborhood modelM = 〈W,N,V〉 as
follows:

M,w |= �(ϕ1, . . . , ϕk;ψ) iff there is an X ∈ N(w) such that X ⊆ [[ψ]]M and for all
i = 1, . . . , k, X ∩ [[ϕi]]M , ∅. /

Exercise 88 Prove that �(ϕ1, . . . , ϕk;ψ)→ �(ϕ1, . . . , ϕk, α;ψ)∨�(ϕ1, . . . , ϕk;ψ∧¬α) is valid
on any neighborhood model (see van Benthem et al., 2016, Axiom NT from Section 4).

It turns out that the�(ϕ1, . . . , ϕk;ψ) modality provides a very interesting new perspec-
tive on the logical analysis of neighborhood structures (beyond its use to find a recursion
axioms for the evidence removal operation). See van Benthem et al. (2016) for further
discussion and many interesting results using the �(ϕ1, . . . , ϕk;ψ) modality. Among other
results, van Benthem et al. develop an appropriate notion of bisimulation and provide a
sound and complete axiomatization of neighborhood frames.

Returning to the question of a recursion axiom for the evidence removal modality, the
new modality is exactly what is needed: 16

Lemma 3.50 [−ϕ]〈 ]ψ↔ (¬[A]ϕ→ �(¬ϕ; [−ϕ]ψ) is valid on all evidence models.

Proof. Let M = 〈W,E,V〉 be an evidence model with [[ϕ]]M , W (otherwise, for all w,
E−ϕ(w) = ∅). We show that [−ϕ]〈 ]ψ ↔ �¬ϕ[−ϕ]ψ is valid on M. Let w ∈ W. The key
observation is that

(∗) for all X ⊆W, X ∈ E−ϕ(w) iff X ∈ E(w) and X ∩ [[¬ϕ]]M , ∅.

Then, for each w ∈W,

M,w |= [−ϕ]〈 ]ψ iff M
−ϕ,w |= 〈 ]ψ

iff there is a X ∈ E−ϕ(w) such that X ⊆ [[ψ]]M−ϕ

iff there is a X ∈ E(w) such that X ∩ [[¬ϕ]]M and X ⊆ [[[−ϕ]ψ]]M
(this follows from (∗) and [[ψ]]M−ϕ = [[[−ϕ]ψ]]M)

iff M,w |= �(¬ϕ; [−ϕ]ψ).

Thus, [−ϕ]〈 ]ψ↔ (¬[A]ϕ→ �(¬ϕ; [−ϕ]ψ) is valid on all evidence models. qed

Note how this principle captures the logical essence of evidence removal.

Recall the definition of the conditional evidence modality (Definition 3.45): An agent
has evidence that ψ conditional on ϕ if there is evidence consistent with ϕ such that

16The precondition is needed because the set of all worlds W is an evidence set.
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restriction to the worlds where ϕ is true entails ψ. Our next conditional operator �ϕψ
drops the latter condition: it is true if the agent has evidence compatible with ϕ that
entails ψ. In general, we include operators �ϕψ where ϕ is a sequence of formulas. The
intended interpretation is that “ψ is entailed by some admissible evidence compatible with
each of ϕ”. After removing ϕ, there is evidence forψ there is currently evidence forψ that
was not removed by the −ϕ operation. The evidence that is not removed is the evidence
that is compatible with ¬ϕ. This �(ϕ;ψ) there is there evidence X ∈ N(w) such that .

However, we are not done yet. We also need a recursion axiom for our new operator
�(ϕ1, . . . , ϕk;ψ). This, in turn, requires another extension to our language. The new
modality combines the conditional neighborhood modality (Definition 3.45) with the
instantial neighborhood modality (Definition 3.49).

Definition 3.51 (Conditional instantial neighborhood modality) Suppose that ϕ1, . . .,
ϕk, α and ψ are formulas (e.g., from L or Lev). Then, �α(ϕ1, . . . , ϕk;ψ) is a formula
interpreted at states in a neighborhood (evidence) modelM = 〈W,N,V〉 as follows:

M,w |= �α(ϕ1, . . . , ϕk;ψ) iff there exists a set X ∈ N(w) such that (i) for all i = 1, . . . , k,
(ii) X ∩ [[ϕi]]M , ∅, X ∩ [[α]]M , ∅, and (iii) X ∩ [[α]]M ⊆ [[ψ]]M. /

Note that this modality can define the instantial neighborhood modality defined above:
�(ϕ1, . . . , ϕk;ψ) is equivalent to �>(ϕ1, . . . , ϕk;ψ). We are now ready to state the recursion
axioms for evidence removal.

[−ϕ]p ↔ (¬[A]ϕ→ p) (p ∈ At)

[−ϕ](ψ ∧ χ) ↔ ([−ϕ]ψ ∧ [−ϕ]χ)

[−ϕ]¬ψ ↔ (¬[A]ϕ→ ¬[−ϕ]ψ)

[−ϕ]�α(ψ1, . . . , ψk;χ) ↔ (¬[A]ϕ→ �[−ϕ]α([−ϕ]ψ1, . . . , [−ϕ]ψk,¬ϕ; [−ϕ]χ)

[−ϕ][A]ψ ↔ (¬[A]ϕ→ [A][−ϕ]ψ)

Consult van Benthem and Pacuit (2011) for further discussion (including an explanation
of how to extend the analysis in the section to the full language involving the belief
modalities).

The main conclusion from this section is that a logical analysis of evidence dynamics
that changes neighborhood models uncovers the need for new modalities in our base
language of evidence models. Clearly, there are many new questions of axiomatization
resulting from this. For the modal logician, the pleasant surprise is that there is a lot
of well-motivated new modal structure in neighborhood models that is waiting to be
explored.
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AppendixA
Relational Semantics for Modal Logic

This Appendix provides a very brief introduction to relational semantics for modal logic.
The goal is to provide just enough details to motivate the discussion of neighborhood
semantics and facilitate a comparison between the two semantics. There are many text-
books that you can consult for more information. The following is a list of some useful
texts (this is not a complete list, but a pointer to books that covers topics related to issues
discussed in this book). 1

• Modal Logic for Open Minds (2010) by Johan van Benthem. An introductory textbook
on modal logic that is focused on the underlying theory and main philosophical
and mathematical applications.

• Modal Logic (2001) by Patrick Blackburn, Maarten de Rijke and Yde Venema. An
advanced, but very accessible, textbook foucsed on the main technical results about
propositional modal logic.

• Modal Logic (1980) by Brian Chellas. An introduction to modal logic that covers both
normal and non-normal systems.

• First Order Modal Logic (1999) by Melvin Fitting and Richard Mendelsohn. This book
provides both a philosophical and technical introduction to first-order modal logic.

Definition A.1 (Relational Frame and Model) A relational frame is a tuple 〈W,R〉where
W is a nonempty set (elements of W are called states), R ⊆ W ×W is a relation on W. A
relational model (also called a Kripke model) is a triple M = 〈W,R,V〉 where 〈W,R〉 is
a relational frame and V : At → ℘(W) is a valuation function assigning sets of states to
atomic propositions. /

1This is not a complete list, but a pointer to books that covers topics related to issues discussed in this
book. See Chagrov and Zakharyaschev (1997); Kracht (1999); Goldblatt (1992a); and Humberstone (2016) for
different perspectives on modal logic.
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Example A.2 The following picture represents the relational structure M = 〈W,R,V〉 where
W = {w1,w2,w3,w4},

R = {(w1,w2), (w1,w3), (w1,w4), (w2,w2), (w2,w4), (w3,w4)}

and V(p) = {w2,w3} and V(q) = {w3,w4}.

pw2

pw1 q w4

p, qw3

Formulas of L are interpreted at states in a relational model.

Definition A.3 (Truth of Modal Formulas) Suppose that M = 〈W,R,V〉 is a relational
model. Truth of a modal formula ϕ ∈ L(At) at a state w in M, denoted M,w |= ϕ, is
defined inductively as follows:

1. M,w |= p iff w ∈ V(p) (where p ∈ At)

2. M,w |= > andM,w 6|= ⊥

3. M,w |= ¬ϕ iffM,w 6|= ϕ

4. M,w |= ϕ ∧ ψ iffM,w |= ϕ andM,w |= ψ

5. M,w |= �ϕ iff for all v ∈W, if wRv thenM, v |= ϕ

6. M,w |= ^ϕ iff there is a v ∈W such that wRv andM, v |= ϕ /

Two remarks about this definition. First, note that truth for the other boolean con-
nectives (→,∨,↔) is not given in the above definition. This is not necessary since these
connectives are definable from ‘¬’ and ‘∧’. 2 As an exercise, make sure you can specify
the truth definition in the style of the definition above for each of the boolean connectives
not mentioned. Second, note the analogy between ‘�’ and the universal quantifier and
‘^’ and the existential quantifier.

2For example, ϕ→ ψ can be defined as (i.e., is logically equivalent to) ¬(ϕ ∧ ¬ψ).
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Remark A.4 (Truth Set) Suppose that M = 〈W,R,V〉 is a relational model. For each
ϕ ∈ L, let [[ϕ]]M = {w ∈W |M,w |= ϕ} be the truth set of ϕ (inM). Formally, we can adapt
the clauses discussed in Section 1.2.1 to define a function [[·]]M : L → ℘(W) (recall that
℘(W) = {X | X ⊆W} is the powerset of W).

Example A.5 To illustrate the above definition of truth of modal formula, recall the relational
model from Example A.2:

pw2

pw1 q w4

p, qw3

• M,w3, |= �q: w4 is the only worlds accessible from w3 and q is true at w4.

• M,w1 |= ^q: there is a state accessible from w1 (namely w3) where q is true.

• M,w1 |= ^�q: w3 is accessible from w1 and q is true in all of the worlds accessible from w3.

• M,w4 |= �⊥: there are no worlds accessible from w4, so any formula beginning with ‘�’
will be true (this is analogous to the fact the universal sentences are true in any first-order
structure where the domain is empty). Similarly, any formula beginning with a ‘^’ will be
false (again, this is analogous to the fact that existential statements are false in first-order
structures with empty domains). /

For an extended discussion surrounding the interpretation modal formulas in rela-
tional models, see Chapter 2 of (van Benthem, 2010).
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Exercise 89 Consider the following relational model.

pw1

q w2 q w3

q

w4

p

w5

p w6

1. �q→ ��q

2. ��q→ �q

3. ^(^q ∧^p)

4. ^�⊥

5. �(�q→ q)→ �q

For each formula to the right, list the states where the formula is true.

Exercise 90 Consult http://dev.pacuit.org/modal/tutorial/ for more examples to test
your understanding of the definition of truth for modal formulas over relational models.

A.1 Validity

Definition A.6 (Validity) A modal formula ϕ ∈ L is valid in a relational model M =
〈W,R,V〉, denotedM |= ϕ, providedM,w |= ϕ for each w ∈ W. Suppose that F = 〈W,R〉
is a relational frame. A modal formula ϕ ∈ L is valid on F , denoted F |= ϕ, provided
M |= ϕ for all models based on F (i.e., all modelsM = 〈F ,V〉). Suppose that F is a class
of relational frames. A modal formula ϕ is valid on F, denoted |=F ϕ, provided F |= ϕ for
all F ∈ F. If F is the class of all relational frames, then I will write |= ϕ instead of |=F ϕ. /

In order to show that a modal formula ϕ is valid, it is enough to argue informally that ϕ
is true at an arbitrary state in an arbitrary relational model. On the other hand, to show
a modal formula ϕ is not valid, one must provide a counter example (i.e., a relational
model and state where ϕ is false).

Fact A.7 �ϕ ∧ �ψ→ �(ϕ ∧ ψ) is valid.

Proof. Suppose M = 〈W,R,V〉 is an arbitrary relational model and w ∈ W an arbitrary
state. We will show M,w |= �ϕ ∧ �ψ → �(ϕ ∧ ψ). Suppose that M,w |= �ϕ ∧ �ψ.
Then M,w |= �ϕ and M,w |= �ψ. Suppose that v ∈ W and wRv. Then M, v |= ϕ and
M, v |= ψ. Hence, M, v |= ϕ ∧ ψ. Since v is an arbitrary state accessible from w, we have
M,w |= �(ϕ ∧ ψ). qed
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Fact A.8 (^ϕ ∧^ψ)→ ^(ϕ ∧ ψ) is not valid.

Proof. We must find a relational model that has a state where an instance of (^ϕ∧^ψ)→
^(ϕ ∧ ψ) is false. Consider the following instance of the above formula: (^p ∧ ^q) →
^(p ∧ q), and letM = 〈W,R,V〉 be the following relational model:

w1

p w2 q w3

We have that M,w1 |= ^p ∧ ^q (why?), but M,w1 6|= ^(p ∧ q) (why?). Hence, M,w1 6|=
(^p ∧^q)→ ^(p ∧ q). qed

Exercise 91 Determine which of the following formulas are valid (prove your answers):

1. �ϕ→ ^ϕ

2. �(ϕ ∨ ¬ϕ)

3. �(ϕ→ ψ)→ (�ϕ→ �ψ)

4. �ϕ→ ϕ

5. ϕ→ �^ϕ

6. ^(ϕ ∨ ψ)→ ^ϕ ∨^ψ

A.2 Definability

Remark A.4 explains how to assign to every modal formula ϕ ∈ L a set of states in a
relational modelM = 〈W,R,V〉 (i.e., the truth set of ϕ, denoted [[ϕ]]M). It is natural to ask
about the converse: Given and arbitrary set, when does a formula uniquely pick out that
set?

Definition A.9 (Definable Subsets) LetM = 〈W,R,V〉 be a relational model. A set X ⊆W
is definable inM provided X = [[ϕ]]M for some modal formula ϕ ∈ L. /

Example A.10 All four of the states in the relational model below are uniquely defined by a modal
formula:

145



Neighborhood Semantics for Modal Logic Appendix A, Section A.2

w2

w1 w4

w3

• {w4} is defined by �⊥
(w4 is the only “dead-end” state)

• {w3} is defined by ^�⊥ ∧ ��⊥
(w3 can only see a “dead-end” state)

• {w2} is defined by ^^^>
(w2 is the only state where 3 steps can be taken)

• {w1} is defined by ^(^�⊥ ∧ ��⊥)
(w1 is the only state that can see w3)

Given the above observations, it is not hard to see that all subsets of W = {w1,w2,w3,w4} are
definable (why?). However, note that even in finite relational models, not all subsets may be
definable. A problem can arise if states cannot be distinguished by modal formulas. For example, if
the reflexive arrow is dropped in the relational model above, then w2 and w3 cannot be distinguished
by a modal formula (there are ways to formally prove this, but see if you can informally argue why
w2 and w3 cannot be distinguished).

The next two definitions make precise what it means for two states to be indistinguish-
able by a modal formula.

Definition A.11 (Modal Equivalence) Let M1 = 〈W1,R1,V1〉 and M2 = 〈W2,R2,V2〉 be
two relational models. We sayM1,w2 andM2,w2 are modally equivalent provided

for all modal formulas ϕ ∈ L,M1,w1 |= ϕ iffM2,w2 |= ϕ

We writeM1,w1 ! M2,w2 ifM1,w1 andM2,w2 are modally equivalent. (Note that it is
assumed w1 ∈W1 and w2 ∈W2) /

Definition A.12 (Bisimulation) Let M1 = 〈W1,R1,V1〉 and M2 = 〈W2,R2,V2〉 be two
relational models. A nonempty relation Z ⊆ W1 ×W2 is called a bisimulation provided
for all w1 ∈W1 and w2 ∈W2, if w1Zw2 then

1. (atomic harmony) For all p ∈ At, w1 ∈ V1(p) iff w2 ∈ V2(p).

2. (zig) If w1R1v1 then there is a v2 ∈W2 such that w2R2v2 and v1Zv2.

3. (zag) If w2R2v2 then there is a v1 ∈W1 such that w1R1v1 and v1Zv2.

We writeM1,w1 ↔M2,w2 if there is a bisimulation relating w1 with w2. /

Definition A.11 and A.12 provide two concrete ways to answer the question: when are
two states the same? The following is a very useful (and instructive!).

Exercise 92 1. Prove that! and ↔ are equivalence relations.
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2. Prove that if X is a definable subset ofM = 〈W,R,V〉, then X is closed under the! relation
(if w ∈ X andM,w!M, v then v ∈ X).

3. Prove that there is a largest bisimulation: given {Zi | i ∈ I} a set of bisimulations relating
the relational models M1 = 〈W1,R1,V1〉 and M2 = 〈W2,R2,V2〉 (i.e., for each i ∈ I,
Zi ⊆W1×W2 satisfies Definition A.12), show that the relation Z =

⋃
i∈I Zi is a bisimulation.

Example A.13 (Bisimulation Example) The dashed lines is a bisimulation between the
following two relational models (for simplicity, we do assume that all atomic propositions
are false):

w1

w2

w3

w4

w5

v1

v2

v3

On the other hand, there is no bisimulation relating the states x and y in the following
two relational models:

x

x1

y

y1

y2

y3

Using Lemma A.14 below, we can prove that there is no bisimulation relating x and y. We
first note that �(^�⊥∨�⊥) is true at state x but not true at state y. Then by Lemma A.14,
x and y cannot be bisimilar.

Lemma A.14 (Modal Invariance Lemma) SupposeM1 = 〈W1,R1,V1〉 andM2 = 〈W2,R2,V2〉

are relational models. For all w ∈W1 and v ∈W2, ifM1,w↔M2, v thenM1,w!M2, v.

Proof. Suppose thatM1,w ↔ M2, v. Then, there is a bisimulation Z such that wZv. The
proof is by induction on the structure of ϕ. The base case is when ϕ is p, an atomic
proposition. By the atomic harmony condition, since wZv, we have V1(w, p) = V2(v, p).
Hence,M1,w |= p iffM2, v |= p. There are three cases to consider:
Case 1: ϕ is ψ1 ∧ ψ2. Then,
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M1,w |= ψ1 ∧ ψ2 iff M1,w |= ψ1 andM1,w |= ψ2 (Def. of Truth)
iff M2, v |= ψ1 andM2, v |= ψ2 (Induction hypothesis)
iff M2, v |= ψ1 ∧ ψ2 (Def. of truth)

Case 2: ϕ is ¬ψ. Then,

M1,w |= ¬ψ iff M1,w 6|= ψ (Def. of Truth)
iff M2, v 6|= ψ (Induction hypothesis)
iff M2, v |= ¬ψ (Def. of truth)

Case 3: ϕ is �ψ. Suppose thatM1,w |= �ψ. Then for each w′, if wR1w′, thenM1,w′ |= ψ.
We will show thatM2, v |= �ψ. Let v′ be any state in W2 with vR2v′. By the zig condition,
there is a w′ ∈ W1 such that wR1w′ and w′Zv′. Since M1,w |= �ψ and wR1w′, we have
M1,w′ |= ψ. By the induction hypothesis, M2, v′ |= ψ. Since v′ is an arbitrary state with
vR2v′, we have M2, v |= �ψ. The converse direction is similar (it makes use of the zag
condition). qed

Lemma A.15 SupposeM1 = 〈W1,R1,V1〉 andM2 = 〈W2,R2,V2〉 are finite relational models.
IfM1,w1!M2,w2 thenM1,w1 ↔M2,w2.

Proof. We show that! is a bisimulation. The atomic harmony condition is obvious.
We prove the zag condition. Suppose that M1,w1 ! M2,w2, w2R2v2, but there is no v1
such that w1R1v1 andM1, v1 ! M2, v2. Note that there are only finitely many states that
are accessible from w1. That is, {w | w1R1w} is a finite set. Suppose that {w | w1R1w} =
{w1,w2, . . . ,wm

}. By assumption, for each wi we have M1,wi
6! M2, v2. Hence, for each

wi, there is a formula ϕi such thatM1,wi
6|= ϕi butM2, v2 |= ϕi. Then,M2, v2 |=

∧
i=1,...,m ϕi.

Since w2R2v2, we haveM2,w2 |= ^
∧

i=1,...,m ϕi. Therefore,M1,w1 |= ^
∧

i=1,...,m ϕi. But this
is a contradiction, since the only states accessible from w1 are w1, . . . ,wm, and for each wi

there is a ϕi such thatM1,wi
6|= ϕi. The proof of the zag condition is similar. qed

The modal invariance Lemma (Lemma A.14) can be used to prove what can and
cannot be expressed in the basic modal language.

Fact A.16 LetM = 〈W,R,V〉 be a relational model. The universal operator is a unary operator
[A]ϕ defined as follows:

M,w |= [A]ϕ iff for all v ∈W,M, v |= ϕ

The universal operator [A] is not definable in the basic modal language.

Proof. Suppose that the universal operator is definable in the basic modal language.
Then there is a basic modal formula α(·) such3 that for any formula ϕ and any relational

3The notation α(·) means that α is a basic modal formula with “free slots” such that α(ϕ) is a well formed
modal formula with ϕ plugged into the free slots.
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structure M with state w, we have M,w |= [A]ϕ iff M,w |= α(ϕ). Consider the relational
modelM = 〈W,R,V〉 with W = {w1,w2}, R = {(w1,w2)} and V(w1, p) = V(w2, p) = T. Note
thatM,w1 |= [A]p. Since the universal operator is assumed to be defined by α(·), we must
haveM,w1 |= α(p). Consider the relational modelM′ = 〈W′,R′,V′〉 with W′ = {v1, v2, v3},
R′ = {(v1, v2), (v3, v1)} and V′(v1, p) = V′(v2, p) = T. Note that Z = {(w1, v2), (w2, v2)} is
a bismulation relating w1 and v1 (i.e., M,w1 ↔ M

′, v1). These relational models and
bisimulation is pictured below:

pw1

pw2

p v1

p v2 p v3

By Lemma A.14, M,w1 ! M′, v1. Therefore, since α(p) is a formula of the basic modal
language and M,w1 |= α(p), we have M′, v1 |= α(p). Since α(p) defines the universal
operator,M′, v1 |= [A]p, which is a contradiction. Hence, [A] is not definable in the basic
modal language. qed

Fact A.17 Let M = 〈W,R,V〉 be a relational model. Define the “exists two” operator ^2ϕ as
follows:

M,w |= ^2ϕ iff there is v1, v2 ∈W such that v1 , v2,M, v1 |= ϕ andM, v2 |= ϕ

The exist two ^2 operator is not definable in the basic modal language.

Proof. Suppose that the^2 is definable in the basic modal language. Then there is a basic
modal formula α(·) such that for any formula ϕ and any relational modelMwith state w,
we haveM,w |= ^2ϕ iffM,w |= α(ϕ). Consider the relational modelM = 〈W,R,V〉 with
W = {w1,w2,w3}, R = {(w1,w2), (w1,w3)} and V(p) = {w2,w3}. Note thatM,w1 |= ^2p. Since
^2 is assumed to be defined by α(·), we must haveM,w1 |= α(p). Consider the relational
model M′ = 〈W′,R′,V′〉 with W′ = {v1, v2}, R′ = {(v1, v2)} and V′(p) = {v2}. Note that
Z = {(w1, v1), (w2, v2), (w3, v2)} is a bismulation relating w1 and v1 (i.e., M,w1 ↔ M

′, v1).
By Lemma A.14, M,w1 ! M′, v1. Therefore, since α(p) is a formula of the basic modal
language and M,w1 |= α(p), we have M′, v1 |= α(p). Since α(·) defines ^2, M′, v1 |= ^2p,
which is a contradiction. Hence, ^2 is not definable in the basic modal language. qed

A.2.1 Defining Classes of Structures

The basic modal language can also be used to define classes of structures.
Suppose that P is a property of relations (eg., reflexivity or transitivity). We say a

frame F = 〈W,R〉 has property P provided R has property P. For example,
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• F = 〈W,R〉 is called a reflexive frame provided R is reflexive, i.e., for all w ∈ W,
wRw.

• F = 〈W,R〉 is called a transitive frame provided R is transitive, i.e., for all w, x, v ∈W,
if wRx and xRv then wRv.

Definition A.18 (Defining a Class of Frames) A modal formula ϕ defines the class of
frames with property P provided for all frames F , F |= ϕ iff F has property P. /

Remark A.19 (Remark on validity on frames) Note that ifF |= ϕwhereϕ is some modal
formula, then F |= ϕ∗ where ϕ∗ is any substitution instance of ϕ. That is, ϕ∗ is obtained
by replacing sentence letters in ϕ with modal formulas. In particular, this means, for
example, that in order to show that F 6|= �ϕ → ϕ it is enough to show that F 6|= �p → p
where p is a sentence letter. (This will be used in the proofs below).

Fact A.20 �ϕ→ ϕ defines the class of reflexive frames.

Proof. We must show for any frame F , F |= �ϕ→ ϕ iff F is reflexive.

(⇐) Suppose that F = 〈W,R〉 is reflexive and let M = 〈W,R,V〉 be any model based on
F . Given w ∈ W, we must show M,w |= �ϕ → ϕ. Suppose that M,w |= �ϕ. Then for
all v ∈ W, if wRv then M, v |= ϕ. Since R is reflexive, we have wRw. Hence, M,w |= ϕ.
Therefore,M,w |= �ϕ→ ϕ, as desired.

(⇒) We argue by contraposition. Suppose that F is not reflexive. We must show
F 6|= �ϕ → ϕ. By the above Remark, it is enough to show F 6|= �p → p for some
sentence letter p. Since F is not reflexive, there is a state w ∈ W such that it is not the
case that wRw. Consider the model M = 〈W,R,V〉 based on F with V(p) = {v | v , w}.
Then M,w |= �p since, by assumption, for all v ∈ W if wRv, then v , w and so v ∈ V(p).
Also, notice that by the definition of V, M,w 6|= p. Therefore, M,w |= �p ∧ ¬p, and so,
F 6|= �p→ p.

(⇒, directly) Suppose that F |= �ϕ→ ϕ. We must show that for all x if xRx. Let x be any
state and consider a modelM based on F with a valuation V(p) = {u | xRu}. Since �p is
true at x we also have p true at x. This means that x ∈ V(p), hence, xRx. qed

Fact A.21 �ϕ→ ��ϕ defines the class of transitive frames.

Proof. We must show for any frame F , F |= �ϕ→ ��ϕ iff F is transitive.

(⇐) Suppose that F = 〈W,R〉 is transitive and let M = 〈W,R,V〉 be any model based on
F . Given w ∈ W, we must showM,w |= �ϕ→ ��ϕ. Suppose thatM,w |= �ϕ. We must
showM,w |= ��ϕ. Suppose that v ∈W and wRv. We must showM, v |= �ϕ. To that end,
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let x ∈ W be any state with vRx. Since R is transitive and wRv and vRx, we have wRx.
Since M,w |= �ϕ, we have M, x |= ϕ. Therefore, since x is an arbitrary state accessible
from v,M, v |= �ϕ. Hence,M,w |= ��ϕ, and so,M,w |= �ϕ→ ��ϕ, as desired.

(⇒, by contraposition) We argue by contraposition. Suppose that F is not transitive. We
must show F 6|= �ϕ→ ��ϕ. By the above Remark, it is enough to show F 6|= �p→ ��p
for some sentence letter p. Since F is not transitive, there are states w, v, x ∈ W with wRv
and vRx but it is not the case that wRx. Consider the modelM = 〈W,R,V〉 based onF with
V(p) = {y | y , x}. SinceM, x 6|= p and wRv and vRx, we haveM,w 6|= ��p. Furthermore,
M,w |= �p since the only state where p is false is x and it is assumed that it is not the case
that wRx. Therefore,M,w |= �p ∧ ¬��p, and so, F 6|= �p→ ��p, as desired.

(⇒, directly) Suppose that F |= �ϕ → ��ϕ. We must show that for all x, y, z if xRy and
yRz then xRz. Let x be any state and consider a model M based on F with a valuation
V(p) = {u | xRu}. Since �p is true at x we also have ��p true at x. This means that for all y
if xRy then (for all z if yRz we have z ∈ V(p)). Recall that z ∈ V(p) means that xRz. Putting
everything together we have: for all y if xRy then for all z if yRz then xRz. qed

Fact A.22 ^�ϕ→ �^ϕ defines the confluence property: for all x, y, z if xRy and xRz then there
is a s such that yRs and zRs.

Proof. We must show for any frame F , F |= ^�ϕ → �^ϕ iff F satisfies the confluence
property: for all x, y, z if xRy and xRz then there is a s such that yRs and zRs.

(⇐) Suppose thatF = 〈W,R〉 satisfies confluence and letM = 〈W,R,V〉be any model based
on F . Given w ∈W, we must showM,w |= ^�ϕ→ �^ϕ. Suppose thatM,w |= ^�ϕ. We
must showM,w |= �^ϕ. Suppose that x ∈ W with wRx. SinceM,w |= ^�ϕ, there is a y
such that wRy andM, y |= �ϕ. Since wRx and wRy, by the confluence property, there is a
s ∈ W with xRs and yRs. Since yRs and M, y |= ^ϕ, we have M, s |= ϕ. Then, since xRs,
we haveM, x |= ^ϕ. Hence,M,w |= �^ϕ, as desired.

(⇒, by contraposition) We argue by contraposition. Suppose that F does not satisfy con-
fluence. We must show F 6|= ^�ϕ → �^ϕ. By the above Remark, it is enough to show
F 6|= ^�p → �^p for some sentence letter p. Since F does not satisfy confluence, there
are states w, x, y ∈W with wRx and wRy but there is no s such that xRs and yRs. Consider
the model M = 〈W,R,V〉 based on F with V(p) = {v | yRv}. Then, M, y |= �p (since all
states accessible from y satisfy p). Since there is no s such that xRs and yRs, we also
have M, x 6|= ^p. Since wRx and wRy, we have M,w 6|= �^p and M,w |= ^�p. Hence,
^�p→ �^p is not valid.

(⇒, directly) Suppose that F |= ^�ϕ→ �^ϕ. We must show that for all x, y, z if xRy and
xRz, then there is a s such that yRs and zRs. Let x be any state and consider a model M
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based on F with a valuation V(p) = {u | yRu}. Let y, z be states with xRy and xRz. Since,
M, y |= �p, we haveM, x |= ^�p. This means thatM, x |= �^p. Hence, since xRz, we have
M, z |= ^p. Thus, there is a states v such that zRv and v ∈ V(p). Since v ∈ V(p), we have
yRv. Putting everything together we have: for all x, y, z if xRy and xRz, then there is a s
such that yRs and zRs. qed

Exercise 93 Determine which class of frames are defined by the following modal formulas.

1. �ϕ→ ^ϕ

2. ^ϕ→ �ϕ

3. ϕ→ �^ϕ

4. ¬�ϕ→ �¬�ϕ

5. �(�ϕ→ ϕ)

6. ��ϕ→ �ϕ

A.3 Normal Modal Logics

Recall the definition of a substitution for modal formulas (Definition 1.11).

Definition A.23 (Tautology) A modal formula ϕ is called a (propositional) tautology if
ϕ = (α)σ where σ is a substition, α is a formula of propositional logic and α is a tautology.
adsfasdfasdf asdfasdf /

For example, �p → (^(p ∧ q) → �p) is a tautology because a → (b → a) is a tautology in
the language of propositional logic and

(a→ (b→ a))σ = �p→ (^(p ∧ q)→ �p)

where σ(a) = �p and σ(b) = ^(p ∧ q).
The definition of the minimal normal modal logic K is given in Section 2.3. The follow-

ing axiom schemes have played an important role in both the mathematical development
of modal logic and in applications of modal logic.

(K) �(ϕ→ ψ)→ (�ϕ→ �ψ)
(D) �ϕ→ ^ϕ

(T) �ϕ→ ϕ

(4) �ϕ→ ��ϕ

(5) ¬�ϕ→ �¬�ϕ

(L) �(�ϕ→ ϕ)→ �ϕ

Each of the above formulas are called axiom schemas and I will often refer to instances
of these axiom schemas. The general idea is to treat the ‘ϕ’ in the above formulas as a
meta-variable that can be replaced by specific formulas from L. For instance, �^p→ ^p
is a substitution instance of the axiom scheme (T).

Recall from Section 2.3 that the minimal normal modal logic, K, is the smallest set of
formulas that contains all tautologies, all instances of (K), all instances of (Dual), and is
closed under the rules (Nec) (from ϕ infer �ϕ) and Modus Ponens (from ϕ and ϕ → ψ
infer ψ). Other normal modal logics are defined by adding all instances of axiom schema
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or rules to K. If A1, . . . ,An are axiom schemas, then K + A1 + A2 + · · · + An is the smallest
set of formulas that contains all tautologies, all instances of K, all instances of Dual,4 for
each i = 1, . . . ,n, all instances of Ai, and is closed under the rules (Nec) (from ϕ infer �ϕ)
and (MP) (from ϕ and ϕ→ ψ infer ψ).

Remark A.24 (Rules) Of course, one may also be interested in defining modal logics by
adding new rules to K. Similar notation can be used to define extensions of K with new
rules—e.g., if R is a rule then K + R is the smallest set of formulas that contain K and is
closed under the rule R.

Using the above naming convention for logics, I can now define a number of well-studied
normal modal logics:

T is K + (T)
S4 is K + (T) + (4)
S5 is K + (T) + (4) + (5)

KD45 is K + (D) + (4) + (5)
GL is K + (L)

Definition A.25 (Deduction) Suppose that L is an extension of K defined from axiom
schemas A1, . . . ,Ak. A deduction in L is a finite sequence of formulas 〈α1, . . . , αn〉 where
for each i ≤ n either

1. αi is a tautology

2. αi is an instance of K

3. αi is an instance of A j for some j = 1, . . . , k

4. αi is of the form �α j for some j < i

5. αi follows by Modus Ponens from earlier formulas (i.e., there is j, k < i such that αk
is of the form α j → αi).

Write `K ϕ if there is a deduction containing ϕ (i.e., in which ϕ is the last formula in a
deduction). /

4The axiom schema (Dual), i.e., �ϕ ↔ ¬^¬ϕ, is needed when � and ^ are treating as basic operators in
the language (rather than taking one to be a defined operator).
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Fact A.26 `K (�ϕ ∧ �ψ)→ �(ϕ ∧ ψ)

Proof.

1. ϕ→ (ψ→ (ϕ ∧ ψ)) propositional tautology
2. �(ϕ→ (ψ→ (ϕ ∧ ψ))) (Nec) 1
3. �(ϕ→ (ψ→ (ϕ ∧ ψ)))→ (�ϕ→ �(ψ→ (ϕ ∧ ψ))) instance of (K)
4. �ϕ→ �(ψ→ (ϕ ∧ ψ)) (MP) 2,3
5. �(ψ→ (ϕ ∧ ψ))→ (�ψ→ �(ϕ ∧ ψ) instance of (K)
6. (a→ b)→ ((b→ c)→ (a→ c)) propositional tautology

a := �ϕ, b := �(ψ→ (ϕ ∧ ψ)),
c := �ψ→ �(ϕ ∧ ψ)

7. (b→ c)→ (a→ c) (MP) 4,6
a := �ϕ, b := �(ψ→ (ϕ ∧ ψ)),
c := �ψ→ �(ϕ ∧ ψ)

8. �ϕ→ (�ψ→ �(ϕ ∧ ψ)) (MP) 5,7
9. (a→ (b→ c))→ ((a ∧ b)→ c) propositional tautology

a := �ϕ, b := �ψ, c = �(ϕ ∧ ψ),
10. (�ϕ ∧ �ψ)→ �(ϕ ∧ ψ) (MP) 8, 9

adfasd qed

Fact A.27 `K �(ϕ ∧ ψ)→ (�ϕ ∧ �ψ)

Proof.

1. ϕ ∧ ψ→ ϕ propositional tautology
2. �((ϕ ∧ ψ)→ ϕ) (Nec) 1
3. �((ϕ ∧ ψ)→ ϕ)→ (�(ϕ ∧ ψ)→ �ϕ) instance of (K)
4. �(ϕ ∧ ψ)→ �ϕ (MP) 2,3
5. ϕ ∧ ψ→ ψ propositional tautology
6. �((ϕ ∧ ψ)→ ψ) (Nec) 5
7. �((ϕ ∧ ψ)→ ϕ)→ (�(ϕ ∧ ψ)→ �ψ) instance of (K)
8. �(ϕ ∧ ψ)→ �ψ (MP) 5,6
9. (a→ b)→ ((a→ c)→ (a→ (b ∧ c))) propositional tautology

(a := �(ϕ ∧ ψ), b := �ϕ, c := �ψ)
10. (a→ c)→ (a→ (b ∧ c)) (MP) 4,9
11. �(ϕ ∧ ψ)→ �ϕ ∧ �ψ (MP) 8,10

adfasd qed

Definition A.28 (Deduction with Assumptions) Suppose that Γ is a set of modal formu-
las and L is an extension of K. We say that ϕ is deducible from Γ provided that there are
finitely many formulas α1, . . . , αk ∈ Γ such that `L (α1 ∧ · · · ∧ αk)→ ϕ. /
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Remark A.29 (Comments on Necessitation) Note that the side condition in item 4. in
the above definition is crucial. Without it, one application of Necessitation shows that
{p} `K �p. Using a deduction theorem stating that Σ;α `K β implies Σ `K α → β, we can
conclude that `K p→ �p. But, clearly p→ �p cannot be a theorem of K (why?).

Definition A.30 (Semantic Consequence) Suppose that Γ is a set of modal formulas and
F is a class of relational frames. We say ϕ is a semantic consequence of Γ with respect
to F, denoted Γ |=F ϕ, provided for all models M = 〈W,R,V〉 based on a frame from F
(i.e., 〈W,R〉 ∈ F) and all states w ∈ W, ifM,w |= Γ, thenM,w |= ϕ (whereM,w |= Γ when
M,w |= γ for all γ ∈ Γ). /

Definition A.31 (Soundness, Weak/Strong Completeness) Suppose that F is a class of
relational frames. A logic L is sound with respect to F provided, for all sets of formulas
Γ, if Γ `L ϕ, then Γ |=F ϕ. A logic L is strongly complete with respect to F provided for
all sets of formulas Γ, if Γ |=F ϕ, then Γ `L ϕ. Finally, a logic L is weakly complete with
respect to F provided that for all ϕ ∈ L, if |=F ϕ, then `L ϕ. /

Clearly, if a logic is strongly complete then it is weakly complete. Interestingly,
the converse is not true (as we will see below). The proofs of the following theorem
can be found in Blackburn et al. (2001). Details of the technique used to prove strong
completeness is discussed in Section 2.3.1.

Theorem A.32 (Completeness Theorems) • K is sound and strongly complete with re-
spect to the class of all relational frames.

• T is sound and strongly complete with respect to the class of reflexive relational frames.

• S4 is sound and strongly complete with respect to the class of reflexive and transitive
relational frames.

• S5 is sound and strongly complete with respect to the class of reflexive, transitive and
Euclidean relational frames (i.e., relations that form a partition).

• KD45 is sound and strongly complete with respect to the class of serial, transitive and
Euclidean relational frames (i.e., relations that form a quasi-partition).

The logic GL does not follow the same pattern as the logics mentioned in the above
theorem. There is a natural class of relational frames that characterizes GL. A relation
R ⊆ W × W is converse well-founded (also called Noetherian) if there is no infinite
ascending chain of states—i.e., there is no infinite set of distinct elements w0,w1, . . . from
W, such that w0 R w1 R w2 · · · . Note that if R is converse well-founded, then it is
irreflexive (for all w ∈ W, w 6R w). It is not hard to see that G is sound with respect
to the class of frames that are transitive and converse well-founded. However, GL is
not strongly complete with respect to this class of frames. To see this, we need some
additional notation.
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Definition A.33 (Compactness) Suppose that L is sound with respect to some class of
frames F. We say that L is compact provided that for any set of formulas Γ, if Γ is finitely
satisfiable (every finite subset of formulas is satisfiable), then Γ is satisfiable. /

Proposition A.34 If L is sound and strongly complete with respect to some class of frames F,
then L is compact.

Proof. Suppose that L is sound and strongly complete with respect to some class of
frames F. Suppose that Γ is any set of formulas that is finitely satisfiable. I.e., every
finite subset Γ0 ⊆ Γ has a model (based on a frame from F). If Γ is not satisfiable, then,
since every consistent set is satisfiable, Γ is inconsistent. I.e., Γ `L ⊥. This means that
there is a deduction from Γ in L of ⊥. Since deductions are finite in length, only finitely
many assumptions from Γ can be used in the deduction. This means that there is a finite
subset Γ0 ⊆ Γ such that Γ0 `L ⊥. By soundness, this means that Γ0 is not satisfiable. This
contradicts our assumption. Thus Γ is satisfiable. qed

Observation A.35 The logic GL is not strongly complete with respect to the class of transitive
and converse well-founded relational frames.

Proof. We will show that GL is not compact. Then, by Proposition A.34, we can conclude
that GL is not strongly complete. Suppose that

Γ = {^p0,�(p0 → ^p1),�(p1 → ^p2), . . . ,�(pn → ^pn+1), . . .}.

Suppose that Γ0 ⊆ Γ is finite. We will show that Γ0 is satisfiable. First of all, note
that without loss of generality we can assume that Γ0 = {^p0,�(p0 → ^p1),�(p1 →

^p2), . . . ,�(pk−1 → ^pk)}. (If ^p0 < Γ0, then since Γ0 only contains formulas with � as
the main connective, and so, a single state with no accessible worlds will make all the
formulas in Γ0 true.) We can construct a modelM = 〈W,R,V〉 with a state that makes all
of Γ0 true. Suppose that W = {w,w0,w1, . . . ,wk} and let R be the transitive closure of

w R w0 R w1 · · ·wk−1 R wk

That is, R is the smallest transitive relation that contains

R0 = {(w,w0), (w0,w1), . . . , (w j,w j+1), . . . , (wk−1,wk)}.

Furthermore, suppose that V : {p0, . . . , pk} → ℘(W) is the valuation function defined as
follows: V(pi) = {wi} for i = 0, . . . , k. Then, since M,w0 |= p0 and w R w0, we have
M,w |= ^p0. Furthermore, if w′ ∈ W is a state such that w R w′ then w′ = wi for some
i = 0, . . . , k. If i , 0, then M,w′ 6|= p0. Thus, trivially, M,w′ |= p0 → ^p1. If i = 0, then,
since w0 R w1 andM,w1 |= p1, we have thatM,w0 |= p0 → ^p1. Thus,M,w0 |= p0 → ^p1.
Hence, M,w |= �(p0 → ^p1). A similar argument shows that M,w |= �(p j → ^p j+1) for
j = 0, . . . , k − 1. Thus,M,w satisfies Γ0.
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However, it is not hard to see that there is no that is transitive and converse well-
founded model with a state satisfying all of Γ. Suppose that there is a modelM = 〈W,R,V〉
and state w ∈ W such that M,w |= ϕ for all ϕ ∈ Γ. Since w |= ^p0 there must be some
accessible world w′ such that M,w′ |= p0. It must be the case that w′ , w (otherwise, R
is not converse well-founded). Since M,w |= �(p0 → ^p1) and w R w′, we must have
M,w′ |= p0 → ^p1. Hence there is some world w′′ such that w′ R w′′ and M,w′′ |= p1.
Since R is transitive, we must have w R w′′. Since R is converse well-founded, we must
have w′′ , w. Continuing in this manner, we construct an infinite chain of worlds that
are R-accessible, contradicting the assumption that R is converse well-founded. Thus, Γ
is not satisfiable on any model that is converse well-founded. qed

Nonetheless, Segerberg (1971) proved a weak completeness theorem for GL. The proof
is beyond the scope of this Appendix (see Blackburn et al. (2001) for the details).

Theorem A.36 The logic GL is sound and weakly complete with respect to the class of transitive
and converse well-founded frames.
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Arló-Costa, H. (2007). The logic of conditionals. In E. N. Zalta (Ed.), The Stanford Encyclo-
pedia of Philosophy (Winter 2016 ed.). [Cited on page 31]
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Baltag, A., N. Bezhanishvili, A. Özgün, and S. Smets (2015). The topological theory of
belief. Technical report, ILLC preprint PP-2015-18. [Cited on page 16]

Baltag, A. and S. Smets (2006a). Conditional doxastic models: A qualitative approach to
dynamic belief revision. In G. Mints and R. de Queiroz (Eds.), Proceedings of WOLLIC
2006, LNCS, Volume 165, pp. 5–21. [Cited on pages 32 and 85]

Baltag, A. and S. Smets (2006b). Dynamic belief revision over multi-agent plausibility
models. In G. Bonanno, W. van der Hoek, and M. Wooldridge (Eds.), Proceedings of the
7th Conference on Logic and the Foundations of Game and Decision (LOFT 2006), pp. 11–24.
[Cited on pages 85 and 131]

Barwise, J. (1987). Three views of common knowledge. In Proceedings of Theoretical Aspects
of Rationality and Knowledge (TARK). [Cited on pages 121, 122, and 125]

Beklemishev, L. and D. Gabelaia (2014). Topological interpretations of provability logic.
In Leo Esakia on Duality in Modal and Intuitionistic Logic, pp. 257 – 290. [Cited on page 21]

Benton, R. (2002). A simple incomplete extension of T which is the union of two complete
modal logics with f.m.p. Journal of Philosophical Logic 31(6), 527 – 541. [Cited on page 68]

Berto, F. (2013). Impossible worlds. In E. N. Zalta (Ed.), The Stanford Encyclopedia of
Philosophy (Winter 2013 ed.). [Cited on pages 52 and 53]

Berwanger, D. (2003). Game logic is strong enough for parity games. Studia Logica 75(2),
205 – 219. [Cited on page 129]

Bezhanishvili, G., L. Esakia, and D. Gabelaia (2010). The modal logic of stone space:
Diamond as derivative. The Review of Symbolic Logic 3(1), 26 – 40. [Cited on page 22]

Bezhanishvili, G., D. Gabelaia, and J. Lucero-Bryan (2015). Modal logics of metric spaces.
Review of Symbolic Logic 8(1), 178 – 192. [Cited on page 21]

Bezhanishvili, G. and M. Gehrke (2005). Completeness of S4 with respect to the real line:
Revisited. Annals of Pure and Applied Logic 131, 287 – 301. [Cited on page 116]

159



Neighborhood Semantics for Modal Logic References

Bjorndahl, A. (2016). Topological subset space models for public announcements. In
Jaakko Hintikka Volume in Outstanding Contributions to Logic. [Cited on page 13]

Blackburn, P., M. de Rijke, and Y. Venema (2001). Modal Logic, Volume 58 of Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press. [Cited on pages 44,
55, 60, 61, 62, 63, 66, 68, 81, 84, 96, 97, 101, 141, 155, and 157]

Board, O. (2004). Dynamic interactive epistemology. Games and Economic Behavior 49, 49
– 80. [Cited on page 32]

Bonanno, G. (1992). Set-theoretic equivalence of extensive-form games. International
Journal of Game Theory 20(4), 429 – 447. [Cited on page 127]

Boolos, G. and G. Sambin (1985). An incomplete system of modal logic. Journal of
Philosophical Logic 14(4), 351 – 358. [Cited on page 68]

Boutilier, C. (1992). Conditional Logics for Default Reasoning and Belief Revision. Ph. D. thesis,
University of Toronto. [Cited on page 87]

Bretto, A. (2013). Hypergraph Theory: An Introduction. Springer. [Cited on pages 20 and 25]

Calardo, E. (2013). Non-normal Modal Logics, and Deontic Dilemmas: A Study in Multi-
relational Semantics. Ph. D. thesis, Universita Di Bologna. [Cited on pages 106, 111,
and 118]

Carr, D. (1979). The logic of knowing how and ability. Mind 88, 394 – 409. [Cited on
page 17]

Chagrov, A. and M. Zakharyaschev (1997). Modal Logic. Oxford University Press. [Cited
on page 141]

Chellas, B. (1980). Modal Logic: An Introduction. Cambridge: Cambridge University Press.
[Cited on pages 47, 56, 63, 72, and 141]

Chwe, M. (2001). Rational Ritual: Culture, Coordination and Common Knowledge. Princeton
University Press. [Cited on page 118]

Conradie, W., V. Goranko, and D. Vakarelov (2006). Algorithmic correspondence and
completeness in modal logic I. the core algorithm SQEMA. Logical Methods in Computer
Science 2(1-5), 1–26. [Cited on page 84]

Cubitt, R. and R. Sugden (2003). Common knowledge, salience and convention: A
reconstruction. Economics and Philosophy 19(2), 175 – 210. [Cited on page 121]
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